Edit model card

zephyr-7b-dpo-qlora

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6813
  • Rewards/chosen: -0.0009
  • Rewards/rejected: -0.0252
  • Rewards/accuracies: 0.2920
  • Rewards/margins: 0.0243
  • Logps/rejected: -71.3009
  • Logps/chosen: -65.4449
  • Logits/rejected: -2.4428
  • Logits/chosen: -2.4444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.69 0.26 100 0.6897 0.0232 0.0168 0.2680 0.0064 -67.1001 -63.0342 -2.4904 -2.4911
0.6869 0.52 200 0.6849 0.0066 -0.0092 0.3060 0.0159 -69.7060 -64.6950 -2.4556 -2.4573
0.681 0.78 300 0.6815 -0.0026 -0.0264 0.2880 0.0238 -71.4280 -65.6224 -2.4430 -2.4446

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lole25/zephyr-7b-dpo-qlora

Adapter
(1171)
this model

Dataset used to train lole25/zephyr-7b-dpo-qlora