See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: MinervaAI/Aesir-Preview
type: sharegpt
- path: KaraKaraWitch/PIPPA-ShareGPT-formatted
type: sharegpt
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: /workspace/llama3-8b-pippa
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: waifu
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.0002
optimizer: paged_adamw_32bit
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 100
eval_table_size:
eval_table_max_new_tokens:
eval_sample_packing: false
saves_per_epoch:
save_steps: 100
save_total_limit: 2
debug:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|im_end|>"
tokens:
- "<|im_start|>"
workspace/llama3-8b-pippa
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset.
It achieves the following results on the evaluation set:
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
4.6425 |
0.0 |
1 |
4.4372 |
1.9054 |
0.21 |
100 |
1.6499 |
1.6536 |
0.41 |
200 |
1.6101 |
1.7332 |
0.62 |
300 |
1.5973 |
1.7975 |
0.82 |
400 |
1.6079 |
1.669 |
1.01 |
500 |
1.5992 |
1.5612 |
1.21 |
600 |
1.5926 |
1.6936 |
1.42 |
700 |
1.5868 |
1.6197 |
1.62 |
800 |
1.5707 |
1.6831 |
1.83 |
900 |
1.5690 |
1.4055 |
2.02 |
1000 |
1.5902 |
1.4736 |
2.22 |
1100 |
1.5987 |
1.4137 |
2.43 |
1200 |
1.5899 |
1.4527 |
2.63 |
1300 |
1.5854 |
1.507 |
2.84 |
1400 |
1.5814 |
1.4538 |
3.03 |
1500 |
1.5900 |
1.4501 |
3.24 |
1600 |
1.5938 |
1.3612 |
3.44 |
1700 |
1.5928 |
1.4801 |
3.65 |
1800 |
1.5922 |
1.3502 |
3.85 |
1900 |
1.5946 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0