Phi-3-mini-128k-instruct-int4
- Orginal model : microsoft/Phi-3-mini-128k-instruct
- Quantized using intel/auto-round
Description
Phi-3-mini-128k-instruct-int4 is an int4 model with group_size 128 of the microsoft/Phi-3-mini-128k-instruct.
The above model was quantized using AutoRound(Advanced Weight-Only Quantization Algorithm for LLMs) released by intel.
you can find out more in detail through the the GitHub Repository.
Training details
Cloning a repository(AutoRound)
git clone https://github.com/intel/auto-round
Enter into the examples/language-modeling folder
cd auto-round/examples/language-modeling
pip install -r requirements.txt
Install FlashAttention-2
pip install flash_attn==2.5.8
Here's an simplified code for quantization. In order to save memory in quantization, we set the batch size to 1.
python main.py \
--model_name "microsoft/Phi-3-mini-128k-instruct" \
--bits 4 \
--group_size 128 \
--train_bs 1 \
--gradient_accumulate_steps 8 \
--deployment_device 'gpu' \
--output_dir "./save_ckpt"
Model inference
Install the necessary packages
pip install auto_gptq
pip install optimum
pip install -U accelerate bitsandbytes datasets peft transformers
Example codes
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"ssuncheol/Phi-3-mini-128k-instruct-int4",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("ssuncheol/Phi-3-mini-128k-instruct-int4")
messages = [
{"role": "system", "content": "You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
License
The model is licensed under the MIT license.
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.