File size: 8,971 Bytes
8f8b054
 
 
 
cacf045
2a77201
 
340b448
 
d1b5811
 
 
8f8b054
 
 
 
 
6d6f3c6
847a7f1
8f8b054
2a77201
 
 
 
 
 
 
 
 
 
 
 
 
8f8b054
6d6f3c6
8f8b054
7d13c97
6d6f3c6
8f8b054
7d13c97
 
 
 
 
8f8b054
7d13c97
 
 
 
 
8f8b054
e14ecb7
6d6f3c6
 
 
 
 
d1b5811
ef6f553
 
469d918
ef6f553
 
d1b5811
ef6f553
 
 
469d918
ef6f553
 
 
d1b5811
ef6f553
 
 
 
 
 
d1b5811
ef6f553
 
6d6f3c6
ef6f553
6d6f3c6
ef6f553
469d918
ef6f553
 
469d918
 
 
ef6f553
 
469d918
 
ef6f553
469d918
d1b5811
 
 
469d918
d1b5811
 
 
 
 
 
 
 
 
 
 
ef6f553
 
2a77201
469d918
ef6f553
0176215
ef6f553
 
 
 
 
 
 
2587718
 
469d918
2587718
6d6f3c6
2587718
469d918
ef6f553
 
 
 
6d6f3c6
ef6f553
 
d1b5811
 
a392854
06b54b2
ef6f553
ca2a3f1
a392854
ef6f553
d1b5811
bef8ac3
 
 
6d6f3c6
 
 
ef6f553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6f3c6
 
 
ef6f553
6d6f3c6
 
 
ef6f553
 
 
8f8b054
6d6f3c6
8f8b054
6d6f3c6
 
 
 
 
 
8f8b054
6d6f3c6
 
8f8b054
 
 
 
ef6f553
8f8b054
 
ef6f553
d1b5811
469d918
8f8b054
ef6f553
 
 
 
 
 
469d918
6d6f3c6
 
 
 
469d918
ef6f553
 
 
 
 
 
 
 
 
 
8f8b054
 
 
ef6f553
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt

# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")

# Specific values for percentage of data for training
percentage_values = np.arange(10) + 1

# Custom class to capture print output
class PrintCapture(io.StringIO):
    def __init__(self):
        super().__init__()
        self.output = []

    def write(self, txt):
        self.output.append(txt)
        super().write(txt)

    def get_output(self):
        return ''.join(self.output)

# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
    percentage = percentage_values[percentage_idx]
    raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
    embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
    
    # Check if the images exist
    if os.path.exists(raw_image_path):
        raw_image = Image.open(raw_image_path)
    else:
        raw_image = create_random_image()  # Use a fallback random image
    
    if os.path.exists(embeddings_image_path):
        embeddings_image = Image.open(embeddings_image_path)
    else:
        embeddings_image = create_random_image()  # Use a fallback random image

    return raw_image, embeddings_image

# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
    random_image = np.random.rand(*size, 3) * 255
    return Image.fromarray(random_image.astype('uint8'))

# Function to split dataset into training and test sets based on user selection
def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
    N = output_emb.shape[0]  # Get the total number of samples
    
    # Generate the indices for shuffling and splitting
    indices = torch.randperm(N)  # Randomly shuffle the indices
    
    # Calculate the split index
    split_index = int(N * percentage_values[percentage_idx] / 10)  # Convert percentage index to percentage value
    print(f'Training Size: {split_index}')
    
    # Split indices into train and test
    train_indices = indices[:split_index]
    test_indices = indices[split_index:]
    
    # Select the same indices from both output_emb and output_raw
    train_emb = output_emb[train_indices]
    test_emb = output_emb[test_indices]
    
    train_raw = output_raw[train_indices]
    test_raw = output_raw[test_indices]

    train_labels = labels[train_indices]
    test_labels = labels[test_indices]

    return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels

# Function to calculate Euclidean distance between a point and a centroid
def classify_based_on_distance(train_data, train_labels, test_data):
    centroid_0 = train_data[train_labels == 0].mean(dim=0)
    centroid_1 = train_data[train_labels == 1].mean(dim=0)
    
    predictions = []
    for test_point in test_data:
        dist_0 = torch.norm(test_point - centroid_0)
        dist_1 = torch.norm(test_point - centroid_1)
        predictions.append(0 if dist_0 < dist_1 else 1)
    
    return torch.tensor(predictions)

# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
    cm = confusion_matrix(y_true, y_pred)
    plt.figure(figsize=(5, 5))
    plt.imshow(cm, cmap='Blues')
    plt.title(title)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.colorbar()
    plt.xticks([0, 1], labels=[0, 1])
    plt.yticks([0, 1], labels=[0, 1])
    plt.tight_layout()
    plt.savefig(f"{title}.png")
    return Image.open(f"{title}.png")

# Function to handle inference and return the results (store the results to state)
def run_inference(uploaded_file):
    capture = PrintCapture()
    sys.stdout = capture  # Redirect print statements to capture

    try:
        # Load the HDF5 file and extract channels and labels
        with h5py.File(uploaded_file.name, 'r') as f:
            channels = np.array(f['channels'])  # Assuming 'channels' dataset in the HDF5 file
            labels = np.array(f['labels'])  # Assuming 'labels' dataset in the HDF5 file
        print(f"Loaded dataset with {channels.shape[0]} samples.")

        # Run the tokenization and model inference
        model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
        model_repo_dir = "./LWM"

        if not os.path.exists(model_repo_dir):
            print(f"Cloning model repository from {model_repo_url}...")
            subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)

        # Load the model
        lwm_model_path = os.path.join(model_repo_dir, 'lwm_model.py')
        input_preprocess_path = os.path.join(model_repo_dir, 'input_preprocess.py')
        inference_path = os.path.join(model_repo_dir, 'inference.py')

        # Load dynamically
        lwm_model = load_module_from_path("lwm_model", lwm_model_path)
        input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
        inference = load_module_from_path("inference", inference_path)

        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"Loading LWM model on {device}...")
        model = lwm_model.LWM.from_pretrained(device=device).to(torch.float32)

        # Preprocess and inference
        preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
        output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
        output_raw = inference.create_raw_dataset(preprocessed_chs, device)

        print(f"Output Embeddings Shape: {output_emb.shape}")
        print(f"Output Raw Shape: {output_raw.shape}")

        return output_emb, output_raw, labels, capture.get_output()

    except Exception as e:
        return None, None, None, str(e)

    finally:
        sys.stdout = sys.__stdout__  # Reset print statements

# Function to handle classification after inference (using Gradio state)
def los_nlos_classification(output_emb, output_raw, labels, percentage_idx):
    if output_emb is not None and output_raw is not None:
        train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
            output_emb.view(len(output_emb), -1),
            output_raw.view(len(output_raw), -1),
            labels,
            percentage_idx
        )
        
        pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
        pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)

        raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
        emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")

        return raw_cm_image, emb_cm_image, "Classification successful"
    
    return create_random_image(), create_random_image(), "No valid inference outputs"

# Define the Gradio interface
with gr.Blocks(css="""
    .vertical-slider input[type=range] {
        writing-mode: bt-lr; /* IE */
        -webkit-appearance: slider-vertical; /* WebKit */
        width: 8px;
        height: 200px;
    }
    .slider-container {
        display: inline-block;
        margin-right: 50px;
        text-align: center;
    }
""") as demo:

    # Tabs for Beam Prediction and LoS/NLoS Classification
    with gr.Tab("LoS/NLoS Classification Task"):
        gr.Markdown("### LoS/NLoS Classification Task")

        file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])

        with gr.Row():
            percentage_dropdown_los = gr.Dropdown(
                choices=[str(v) for v in percentage_values * 10],
                value=10,
                label="Percentage of Data for Training",
                interactive=True
            )

        with gr.Row():
            raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
            output_textbox = gr.Textbox(label="Console Output", lines=10)

        # Process file upload to run inference
        inference_output = gr.State()
        file_input.upload(run_inference, inputs=file_input, outputs=inference_output)

        # Handle dropdown change for classification
        percentage_dropdown_los.change(
            fn=los_nlos_classification,
            inputs=[inference_output['output_emb'], inference_output['output_raw'], inference_output['labels'], percentage_dropdown_los],
            outputs=[raw_img_los, embeddings_img_los, output_textbox]
        )

# Launch the app
if __name__ == "__main__":
    demo.launch()