Spaces:
Running
Running
File size: 8,971 Bytes
8f8b054 cacf045 2a77201 340b448 d1b5811 8f8b054 6d6f3c6 847a7f1 8f8b054 2a77201 8f8b054 6d6f3c6 8f8b054 7d13c97 6d6f3c6 8f8b054 7d13c97 8f8b054 7d13c97 8f8b054 e14ecb7 6d6f3c6 d1b5811 ef6f553 469d918 ef6f553 d1b5811 ef6f553 469d918 ef6f553 d1b5811 ef6f553 d1b5811 ef6f553 6d6f3c6 ef6f553 6d6f3c6 ef6f553 469d918 ef6f553 469d918 ef6f553 469d918 ef6f553 469d918 d1b5811 469d918 d1b5811 ef6f553 2a77201 469d918 ef6f553 0176215 ef6f553 2587718 469d918 2587718 6d6f3c6 2587718 469d918 ef6f553 6d6f3c6 ef6f553 d1b5811 a392854 06b54b2 ef6f553 ca2a3f1 a392854 ef6f553 d1b5811 bef8ac3 6d6f3c6 ef6f553 6d6f3c6 ef6f553 6d6f3c6 ef6f553 8f8b054 6d6f3c6 8f8b054 6d6f3c6 8f8b054 6d6f3c6 8f8b054 ef6f553 8f8b054 ef6f553 d1b5811 469d918 8f8b054 ef6f553 469d918 6d6f3c6 469d918 ef6f553 8f8b054 ef6f553 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage of data for training
percentage_values = np.arange(10) + 1
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
percentage = percentage_values[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
# Check if the images exist
if os.path.exists(raw_image_path):
raw_image = Image.open(raw_image_path)
else:
raw_image = create_random_image() # Use a fallback random image
if os.path.exists(embeddings_image_path):
embeddings_image = Image.open(embeddings_image_path)
else:
embeddings_image = create_random_image() # Use a fallback random image
return raw_image, embeddings_image
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
# Function to split dataset into training and test sets based on user selection
def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
N = output_emb.shape[0] # Get the total number of samples
# Generate the indices for shuffling and splitting
indices = torch.randperm(N) # Randomly shuffle the indices
# Calculate the split index
split_index = int(N * percentage_values[percentage_idx] / 10) # Convert percentage index to percentage value
print(f'Training Size: {split_index}')
# Split indices into train and test
train_indices = indices[:split_index]
test_indices = indices[split_index:]
# Select the same indices from both output_emb and output_raw
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Function to calculate Euclidean distance between a point and a centroid
def classify_based_on_distance(train_data, train_labels, test_data):
centroid_0 = train_data[train_labels == 0].mean(dim=0)
centroid_1 = train_data[train_labels == 1].mean(dim=0)
predictions = []
for test_point in test_data:
dist_0 = torch.norm(test_point - centroid_0)
dist_1 = torch.norm(test_point - centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions)
# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(5, 5))
plt.imshow(cm, cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.colorbar()
plt.xticks([0, 1], labels=[0, 1])
plt.yticks([0, 1], labels=[0, 1])
plt.tight_layout()
plt.savefig(f"{title}.png")
return Image.open(f"{title}.png")
# Function to handle inference and return the results (store the results to state)
def run_inference(uploaded_file):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
# Load the HDF5 file and extract channels and labels
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file
labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file
print(f"Loaded dataset with {channels.shape[0]} samples.")
# Run the tokenization and model inference
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Load the model
lwm_model_path = os.path.join(model_repo_dir, 'lwm_model.py')
input_preprocess_path = os.path.join(model_repo_dir, 'input_preprocess.py')
inference_path = os.path.join(model_repo_dir, 'inference.py')
# Load dynamically
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
inference = load_module_from_path("inference", inference_path)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading LWM model on {device}...")
model = lwm_model.LWM.from_pretrained(device=device).to(torch.float32)
# Preprocess and inference
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
print(f"Output Embeddings Shape: {output_emb.shape}")
print(f"Output Raw Shape: {output_raw.shape}")
return output_emb, output_raw, labels, capture.get_output()
except Exception as e:
return None, None, None, str(e)
finally:
sys.stdout = sys.__stdout__ # Reset print statements
# Function to handle classification after inference (using Gradio state)
def los_nlos_classification(output_emb, output_raw, labels, percentage_idx):
if output_emb is not None and output_raw is not None:
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
output_emb.view(len(output_emb), -1),
output_raw.view(len(output_raw), -1),
labels,
percentage_idx
)
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, "Classification successful"
return create_random_image(), create_random_image(), "No valid inference outputs"
# Define the Gradio interface
with gr.Blocks(css="""
.vertical-slider input[type=range] {
writing-mode: bt-lr; /* IE */
-webkit-appearance: slider-vertical; /* WebKit */
width: 8px;
height: 200px;
}
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
""") as demo:
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
with gr.Row():
percentage_dropdown_los = gr.Dropdown(
choices=[str(v) for v in percentage_values * 10],
value=10,
label="Percentage of Data for Training",
interactive=True
)
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
output_textbox = gr.Textbox(label="Console Output", lines=10)
# Process file upload to run inference
inference_output = gr.State()
file_input.upload(run_inference, inputs=file_input, outputs=inference_output)
# Handle dropdown change for classification
percentage_dropdown_los.change(
fn=los_nlos_classification,
inputs=[inference_output['output_emb'], inference_output['output_raw'], inference_output['labels'], percentage_dropdown_los],
outputs=[raw_img_los, embeddings_img_los, output_textbox]
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|