Sadjad Alikhani commited on
Commit
847a7f1
·
verified ·
1 Parent(s): e4244d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -16,7 +16,7 @@ RAW_PATH = os.path.join("images", "raw")
16
  EMBEDDINGS_PATH = os.path.join("images", "embeddings")
17
 
18
  # Specific values for percentage of data for training
19
- percentage_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
20
 
21
  # Custom class to capture print output
22
  class PrintCapture(io.StringIO):
@@ -228,6 +228,9 @@ def process_hdf5_file(uploaded_file, percentage_idx):
228
  percentage_idx)
229
 
230
  # Step 8: Perform classification using the Euclidean distance for both raw and embeddings
 
 
 
231
  pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
232
  pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
233
  print(f'pred_emb: {pred_emb}')
@@ -279,7 +282,12 @@ with gr.Blocks(css="""
279
  with gr.Row():
280
  with gr.Column(elem_id="slider-container"):
281
  gr.Markdown("Percentage of Data for Training")
282
- percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
 
 
 
 
 
283
 
284
  with gr.Row():
285
  raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
 
16
  EMBEDDINGS_PATH = os.path.join("images", "embeddings")
17
 
18
  # Specific values for percentage of data for training
19
+ percentage_values = np.arange(10) + 1
20
 
21
  # Custom class to capture print output
22
  class PrintCapture(io.StringIO):
 
228
  percentage_idx)
229
 
230
  # Step 8: Perform classification using the Euclidean distance for both raw and embeddings
231
+ print(f'train_data_emb: {train_data_emb.shape}')
232
+ print(f'train_labels: {train_labels.shape}')
233
+ print(f'test_data_emb: {test_data_emb.shape}')
234
  pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
235
  pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
236
  print(f'pred_emb: {pred_emb}')
 
282
  with gr.Row():
283
  with gr.Column(elem_id="slider-container"):
284
  gr.Markdown("Percentage of Data for Training")
285
+ #percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
286
+ percentage_dropdown_los = gr.Dropdown(choices=percenatge_values*10,
287
+ value=10,
288
+ label="Percentage of Data for Training",
289
+ interactive=True)
290
+
291
 
292
  with gr.Row():
293
  raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)