Sadjad Alikhani commited on
Commit
e4244d1
·
verified ·
1 Parent(s): 7d13c97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -132,14 +132,15 @@ def plot_confusion_matrix(y_true, y_pred, title):
132
  plt.savefig(f"{title}.png")
133
  return Image.open(f"{title}.png")
134
 
135
- def identical_train_test_split(output_emb, output_raw, labels, percentage):
136
  N = output_emb.shape[0] # Get the total number of samples
137
 
138
  # Generate the indices for shuffling and splitting
139
  indices = torch.randperm(N) # Randomly shuffle the indices
140
 
141
  # Calculate the split index
142
- split_index = int(N * percentage)
 
143
 
144
  # Split indices into train and test
145
  train_indices = indices[:split_index] # First 80% for training
@@ -229,7 +230,7 @@ def process_hdf5_file(uploaded_file, percentage_idx):
229
  # Step 8: Perform classification using the Euclidean distance for both raw and embeddings
230
  pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
231
  pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
232
-
233
  # Step 9: Generate confusion matrices for both raw and embeddings
234
  raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
235
  emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
 
132
  plt.savefig(f"{title}.png")
133
  return Image.open(f"{title}.png")
134
 
135
+ def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
136
  N = output_emb.shape[0] # Get the total number of samples
137
 
138
  # Generate the indices for shuffling and splitting
139
  indices = torch.randperm(N) # Randomly shuffle the indices
140
 
141
  # Calculate the split index
142
+ split_index = int(N * percentage_values[percentage_idx])
143
+ print(f'Training Size: {split_index}')
144
 
145
  # Split indices into train and test
146
  train_indices = indices[:split_index] # First 80% for training
 
230
  # Step 8: Perform classification using the Euclidean distance for both raw and embeddings
231
  pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
232
  pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
233
+ print(f'pred_emb: {pred_emb}')
234
  # Step 9: Generate confusion matrices for both raw and embeddings
235
  raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
236
  emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")