Spaces:
Runtime error
Runtime error
File size: 48,210 Bytes
1699569 6ce67d2 1699569 6ce67d2 e5a12b8 62faff0 2267bcd 66e83e0 1699569 c6e3011 6ce67d2 c6e3011 ff86fbf 62faff0 c6e3011 6ce67d2 c6e3011 1699569 62faff0 f21967a a6d026f f192d73 62faff0 3559da9 f2f40f0 f192d73 afb8bf9 62faff0 3559da9 f2f40f0 afb8bf9 a6d026f f21967a 2bba935 6ce67d2 c6e3011 e48b5b5 6ce67d2 105ed33 62faff0 2bba935 b2912c4 6ce67d2 1699569 e48b5b5 2267bcd 105ed33 62faff0 e48b5b5 f21967a e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 105ed33 f67304b 1699569 c5c0a51 1699569 c5c0a51 8eb1090 6ce67d2 f67304b 6ce67d2 f67304b 6ce67d2 f67304b 6ce67d2 f67304b 6ce67d2 f67304b 6ce67d2 f67304b 6ce67d2 f67304b 6ce67d2 c5c0a51 1699569 6ce67d2 4b2cc15 6ce67d2 c5c0a51 6337933 6ce67d2 c5c0a51 e32c352 f658f80 e5a12b8 d4a2975 8eb1090 6ce67d2 e32c352 6ce67d2 e32c352 6337933 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 e32c352 6ce67d2 8eb1090 62faff0 6ce67d2 62faff0 fb7bdf2 62faff0 fb7bdf2 2267bcd 8eb1090 2267bcd 6ce67d2 2267bcd 6ce67d2 2267bcd 6ce67d2 8eb1090 66e83e0 6ce67d2 f2f40f0 ff86fbf 66e83e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 |
import streamlit as st
import time
import concurrent.futures
import json
from gensim.models import Word2Vec
import pandas as pd
import threading
import matplotlib.pyplot as plt
import squarify
import numpy as np
import re
import urllib.request
import random
import plotly.express as px
st.set_page_config(
page_title="Abstractalytics",
page_icon=":microscope:",
layout="wide", #centered
initial_sidebar_state="auto",
menu_items={
'About': "Abstractalytics is a Natural Language Processing (NLP) that harnesses Word2Vec to mine"
" insight from pubmed abstracts. Created by Jimmie E. Fata, PhD"
}
)
# Define the HTML and CSS styles
st.markdown("""
<style>
[data-testid=stSidebar] {
background-color: #99CCFF;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
body {
background-color: #CCFFFF;
# color: #ffffff;
# font-size: 1px
}
.stApp {
background-color: #CCFFFF;
# color: #ffffff;
# font-size: 1px
}
</style>
""", unsafe_allow_html=True)
st.header(":red[*Abstractalytics*]")
st.subheader("*A web app designed to explore :red[*PubMed abstracts*] for deeper understanding and fresh insights, driven "
"by Natural Language Processing (NLP) techniques.*")
def custom_subheader(text, identifier, font_size):
st.markdown(f"<h3 id='{identifier}' style='font-size: {font_size}px;'>{text}</h3>", unsafe_allow_html=True)
custom_subheader("Welcome to our innovative web2vec app designed to unlock the wealth of knowledge and insights hidden "
"within PubMed abstracts! To begin, simply select a corpus that interests you. Next, enter a single keyword "
"you wish to explore within the corpus. Abstractalytics powerful Natural Language "
"Processing (NLP) algorithms will analyze the chosen corpus and present you with a list of top words, "
"genes, drugs, phytochemicals, and compounds that are contextually and semantically related "
"to your input. This advanced text-mining technique enables you to explore and understand complex "
"relationships, uncovering new discoveries and connections in your field of research across a massive "
"amount of abstracts. Dive in and enjoy the exploration! More oncology-related corpora comming soon.", "unique-id", 18)
st.markdown("---")
#Define the correct password
# CORRECT_PASSWORD = "123"
# Define a function to check if the password is correct
# def authenticate(password):
# if password == CORRECT_PASSWORD:
# return True
# else:
# return False
#
# # Create a Streamlit input field for the password
# password = st.text_input("Enter password:", type="password")
#
# # If the password is correct, show the app content
# if authenticate(password):
opt = st.sidebar.radio("Select a PubMed Corpus",
options=(
'Breast Cancer corpus', 'Lung Cancer corpus'))
# if opt == "Clotting corpus":
# model_used = ("pubmed_model_clotting")
# num_abstracts = 45493
# database_name = "Clotting"
# if opt == "Neuroblastoma corpus":
# model_used = ("pubmed_model_neuroblastoma")
# num_abstracts = 29032
# database_name = "Neuroblastoma"
if opt == "Breast Cancer corpus":
model_used = ("pubmed_model_breast_cancer2")
num_abstracts = 290320
database_name = "Breast_cancer"
if opt == "Lung Cancer corpus":
model_used = ("lung_cancer_pubmed_model")
num_abstracts = 210320
database_name = "Lung_cancer"
st.header(f":blue[{database_name} Pubmed corpus.]")
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
query = text_input_value
query = query.lower()
query = re.sub("[,.?!&*;:]", "", query)
query = re.sub(" ", "-", query)
# matches = [" "]
# if any([x in query for x in matches]):
# st.write("Please only enter one term or a term without spaces")
# # query = input ("Enter your keyword(s):")
if query:
bar = st.progress(0)
time.sleep(.05)
st.caption(f"Searching {num_abstracts} {database_name} PubMed abstracts covering 1990-2022")
for i in range(10):
bar.progress((i + 1) * 10)
time.sleep(.1)
# try:
model = Word2Vec.load(f"{model_used}") # you can continue training with the loaded model!
words = list(model.wv.key_to_index)
X = model.wv[model.wv.key_to_index]
# print(model.wv['bfgf'])
model2 = model.wv[query]
# print(model.wv.similar_by_word('bfgf', topn=50, restrict_vocab=None))
df = pd.DataFrame(X)
def get_compound_ids(compound_names):
with concurrent.futures.ThreadPoolExecutor() as executor:
compound_ids = list(executor.map(get_compound_id, compound_names))
return compound_ids
import requests
def get_compound_id(compound_name):
url = f"http://rest.kegg.jp/find/compound/{compound_name}"
response = requests.get(url)
if response.status_code == 200:
result = response.text.split('\n')
if result[0]:
compound_id = result[0].split('\t')[0]
return compound_id
return None
# except:
# st.error("Term occurrence is too low - please try another term")
# st.stop()
st.markdown("---")
table = model.wv.most_similar_cosmul(query, topn=10000)
table = (pd.DataFrame(table))
table.index.name = 'Rank'
table.columns = ['Word', 'SIMILARITY']
pd.set_option('display.max_rows', None)
table2 = table.copy()
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap to visualize "
# f"<span style='color:red; font-style: italic;'>words</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
# Set the max number of words to display
value_word = min(100, len(table2))
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_word} "
f"</span>words contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query} </span>within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. "
f"Click on the squares to expand and also the PubMed and Wikipedia links for more word information</span></p></b>",
unsafe_allow_html=True)
short_table = table2.head(value_word).round(2)
short_table.index += 1
short_table.index = (1 / short_table.index) * 10
sizes = short_table.index.tolist()
short_table.set_index('Word', inplace=True)
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(value_word)["SIMILARITY"].round(2).astype(str)
rank_num = list(short_table.index.tolist())
df = short_table
try:
df['text'] = short_table.index
df['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
df.loc[:, 'database'] = database_name
fig = px.treemap(df, path=[short_table.index], values=sizes, custom_data=['href', 'text', 'database', 'href2'],
hover_name=(table2.head(value_word)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<br><span "
"style='font-family: Arial; font-size: 20px;'>%{customdata[1]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[3]}'>Wikipedia"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightgreen"])
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
# st.caption(
# "Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
# st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
csv = table2.head(value_word).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_word} words (csv)", data=csv,
file_name=f'{database_name}_words.csv', mime='text/csv')
except:
st.warning(
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus, please choose a lower number")
# st.markdown("---")
# # st.write(short_table)
# #
#
# # print()
# # print("Human genes similar to " + str(query))
# df1 = table.copy()
# df2 = pd.read_csv('Human Genes.csv')
# m = df1.Word.isin(df2.symbol)
# df1 = df1[m]
# df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# # print(df1.head(50))
# # print()
# # df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# # time.sleep(2)
# # Create the slider with increments of 5 up to 100
#
# # Set the maximum number of genes to display up to 100
# value_gene = min(len(df1), 100)
#
# if value_gene > 0:
# # st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Treemap visualization of "
# # f"<span style='color:red; font-style: italic;'>genes</span> contextually "
# # f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# # f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# # unsafe_allow_html=True)
#
# st.markdown(
# f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_gene} "
# f"</span>genes contextually and semantically similar to "
# f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> database. "
# f"Click on the squares to expand and also the Pubmed and GeneCard links for more gene information</span></p></b>",
# unsafe_allow_html=True)
#
# df10 = df1.head(value_gene).copy()
# df10.index = (1 / df10.index) * 100000
# sizes = df10.index.tolist()
# df10.set_index('Human Gene', inplace=True)
#
# df3 = df1.copy()
# df3["SIMILARITY"] = 'Similarity Score ' + df3.head(value_gene)["SIMILARITY"].round(2).astype(str)
# df3.reset_index(inplace=True)
# df3 = df3.rename(columns={'Human Gene': 'symbol2'})
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df3.head(value_gene).query('symbol2 in @df2.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2, on='symbol2')
# # Show the result
# # print(result)
# # label = df10.index.tolist()
# # df2 = df10
# # print(df2)
# try:
# # Define the `text` column for labels and `href` column for links
# df10['text'] = df10.index
# df10['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
# '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10['text']]
# df10['href2'] = [f'https://www.genecards.org/cgi-bin/carddisp.pl?gene=' + c for c in df10['text']]
#
# df10['name'] = [c for c in result['Approved name']]
# assert isinstance(df10, object)
# df10.loc[:, 'database'] = database_name
#
# # print(df['name'])
#
# # Create the treemap using `px.treemap`
# fig = px.treemap(df10, path=[df10['text']], values=sizes,
# custom_data=['href', 'name', 'database', 'href2', 'text'],
# hover_name=(df3.head(value_gene)['SIMILARITY']))
#
# fig.update(layout_coloraxis_showscale=False)
# fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig.update_annotations(visible=False)
# fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
# hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
# texttemplate="<br><span style='font-family: Arial; font-size: 20px;'>%{customdata[4]}<br><br>"
# "%{customdata[1]}<br><br>"
# "<a href='%{customdata[0]}'>PubMed"
# "</a><br><br><a href='%{customdata[3]}'>GeneCard"
# "</span></a>")
# fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightblue"])
# # # display the treemap in Streamlit
# # with treemap2:
#
# # st.pyplot(fig2)
# st.plotly_chart(fig, use_container_width=True)
#
# st.caption(
# "Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
# st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
# st.caption("Gene information provided by GeneCards: https://www.genecards.org//")
#
# csv = df1.head(value_gene).to_csv().encode('utf-8')
# st.download_button(label=f"download top {value_gene} genes (csv)", data=csv,
# file_name=f'{database_name}_genes.csv', mime='text/csv')
#
#
# except:
# st.warning(f"No similar genes related to {query} within the {database_name} corpus were found.")
st.markdown("---")
df1 = table.copy()
df2 = pd.read_csv('Human Genes.csv')
m = df1.Word.isin(df2.symbol)
df1 = df1[m]
df1.rename(columns={'Word': 'Genes'}, inplace=True)
df_len = len(df1)
print(len(df1))
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap to visualize "
# f"<span style='color:red; font-style: italic;'>proteins</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
# Set the number of proteins to display
value_gene = min(df_len, 100)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_gene} "
f"</span>human genes contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query} </span>within the <span style='color:red; font-style: italic;'>{database_name} </span>corpus. Click on the squares to expand and also the Pubmed and GeneCard links for more gene information</span></p></b>",
unsafe_allow_html=True)
df11 = df1.head(value_gene).copy()
df11.index = (1 / df11.index) * 10000
sizes = df11.index.tolist()
df11.set_index('Genes', inplace=True)
df4 = df1.copy()
# print(df4.head(10))
df4["SIMILARITY"] = 'Similarity Score ' + df4.head(value_gene)["SIMILARITY"].round(2).astype(str)
df4.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_gene <= df_len:
# Define the `text` column for labels and `href` column for links
df11['text'] = df11.index
df11['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df11['text']]
df11['href2'] = [f'https://www.genecards.org/cgi-bin/carddisp.pl?gene=' + c for c in df11['text']]
assert isinstance(df11, object)
df11['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df11, path=[df11['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
hover_name=(df4.head(value_gene)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>GeneCard"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["LightPink"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
# st.caption(
# "Gene designation and database provided by KEGG homo sapien gene list: https://rest.kegg.jp/list/hsa")
# st.caption("Gene information provided by GeneCards: https://www.genecards.org//")
st.caption("Human gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
st.caption("Gene information provided by GeneCards: https://www.genecards.org//")
csv = df1.head(value_gene).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_gene} genes (csv)", data=csv,
file_name=f'{database_name}_genes.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus, please choose a lower number")
st.markdown("---")
# print()
# print("Human genes similar to " + str(query))
df1 = table.copy()
df2 = pd.read_csv('kegg_drug_list_lowercase.csv')
m = df1.Word.isin(df2.drugs)
df1 = df1[m]
df1.rename(columns={'Word': 'Drugs'}, inplace=True)
df_len = len(df1)
# print(len(df1))
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# print(df1.head(50))
# print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
# Create the slider with increments of 5 up to 100
# Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
value_drug = min(df1.shape[0], 100)
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_drug} "
f"</span>Drugs contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. Click on the squares to expand and the Pubmed and Wikipedia links for more compound information</span></p></b>",
unsafe_allow_html=True)
df13 = df1.head(value_drug).copy()
df13.index = (1 / df13.index) * 10000
sizes = df13.index.tolist()
df13.set_index('Drugs', inplace=True)
df6 = df1.copy()
# print(df4.head(10))
df6["SIMILARITY"] = 'Similarity Score ' + df6.head(value_drug)["SIMILARITY"].round(2).astype(str)
df6.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_drug <= df_len:
# Define the `text` column for labels and `href` column for links
# Reset the index
df13.reset_index(inplace=True)
# Replace hyphens with spaces in the 'text' column
df13['Drugs'] = df13['Drugs'].str.replace('-', ' ')
# Set the 'text' column back as the index
df13.set_index('Drugs', inplace=True)
df13['text'] = df13.index
df13['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df13['text']]
df13['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df13['text']]
assert isinstance(df13, object)
df13['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df13, path=[df13['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
hover_name=(df6.head(value_drug)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>Wikipedia"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["Thistle"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
st.caption(
"Drug designation and database provided by KEGG: https://www.kegg.jp/kegg/drug/")
csv = df1.head(value_drug).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_drug} drugs (csv)", data=csv,
file_name=f'{database_name}_drugs.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar drugs related to {query} within the {database_name} corpus, please choose a lower number")
st.markdown("---")
#
# st.markdown("---")
# # print()
# # print("Human genes similar to " + str(query))
# df1 = table.copy()
# df2 = pd.read_csv('diseasesKegg.csv')
# m = df1.Word.isin(df2.disease)
# df1 = df1[m]
# df1.rename(columns={'Word': 'Disease'}, inplace=True)
# df_len = len(df1)
# # print(len(df1))
# # df1["Human Gene"] = df1["Human Gene"].str.upper()
# # print(df1.head(50))
# # print()
# # df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# # time.sleep(2)
# # Create the slider with increments of 5 up to 100
#
# # Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
# value_disease = min(df1.shape[0], 100)
#
# # st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# # f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# # f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# # f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# # unsafe_allow_html=True)
#
# st.markdown(
# f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_disease} "
# f"</span>Diseases contextually and semantically similar to "
# f"<span style='color:red; font-style: italic;'>{query}:</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> database. Click on the squares to expand and the Pubmed and Wikipedia links for more compound information</span></p></b>",
# unsafe_allow_html=True)
#
# df14 = df1.head(value_disease).copy()
#
# df14.index = (1 / df14.index) * 10000
# sizes = df14.index.tolist()
#
# df14.set_index('Disease', inplace=True)
#
# df7 = df1.copy()
# # print(df4.head(10))
# df7["SIMILARITY"] = 'Similarity Score ' + df7.head(value_disease)["SIMILARITY"].round(2).astype(str)
# df7.reset_index(inplace=True)
# # df4 = df4.rename(columns={'Protein': 'symbol2'})
# # print(df4)
# # # Use df.query to get a subset of df1 based on ids in df2
# # subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # # Use merge to join the two DataFrames on id
# # result = pd.merge(subset, df2b, on='symbol2')
# # print(result)
# if value_disease <= df_len:
# # Define the `text` column for labels and `href` column for links
# # Reset the index
# df14.reset_index(inplace=True)
#
# # Replace hyphens with spaces in the 'text' column
# df14['Disease'] = df14['Disease'].str.replace('-', ' ')
#
# # Set the 'text' column back as the index
# df14.set_index('Disease', inplace=True)
# df14['text'] = df14.index
# df14['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
# '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df14['text']]
# df14['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df14['text']]
# assert isinstance(df14, object)
# df14['database'] = database_name
#
# # df11['name'] = [c for c in result['Approved name']]
#
# # Create the treemap using `px.treemap`
# fig = px.treemap(df14, path=[df14['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
# hover_name=(df7.head(value_disease)['SIMILARITY']))
#
# fig.update(layout_coloraxis_showscale=False)
# fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig.update_annotations(visible=False)
# fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
# hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
# texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
# "<a href='%{customdata[0]}'>PubMed"
# "</a><br><br><a href='%{customdata[2]}'>Wikipedia"
# "</span></a>")
# fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["PaleGoldenRod"])
# # # display the treemap in Streamlit
# # with treemap2:
#
# # st.pyplot(fig2)
# st.plotly_chart(fig, use_container_width=True)
#
# st.caption("Disease designation and database provided by KEGG: https://www.genome.jp/kegg/disease/")
#
# csv = df1.head(value_disease).to_csv().encode('utf-8')
# st.download_button(label=f"download top {value_disease} diseases (csv)", data=csv,
# file_name=f'{database_name}_disease.csv', mime='text/csv')
#
#
# else:
# st.warning(
# f"This selection exceeds the number of similar diseases related to {query} within the {database_name} corpus, please choose a lower number")
# st.markdown("---")
# st.markdown("---")
# # print()
# # print("Human genes similar to " + str(query))
# df1 = table.copy()
# df2 = pd.read_csv('pathwaysKegg.csv')
# m = df1.Word.isin(df2.pathway)
# df1 = df1[m]
# df1.rename(columns={'Word': 'Pathway'}, inplace=True)
# df_len = len(df1)
# # print(len(df1))
# # df1["Human Gene"] = df1["Human Gene"].str.upper()
# # print(df1.head(50))
# # print()
# # df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# # time.sleep(2)
# # Create the slider with increments of 5 up to 100
#
# # Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
# value_pathway = min(df1.shape[0], 100)
#
# # st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# # f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# # f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# # f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# # unsafe_allow_html=True)
#
# st.markdown(
# f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_pathway} "
# f"</span>Pathways contextually and semantically similar to "
# f"<span style='color:red; font-style: italic;'>{query}:</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> database. Click on the squares to expand and the Pubmed and Wikipedia links for more compound information</span></p></b>",
# unsafe_allow_html=True)
#
# df16 = df1.head(value_pathway).copy()
#
# df16.index = (1 / df16.index) * 10000
# sizes = df16.index.tolist()
#
# df16.set_index('Pathway', inplace=True)
#
# df9 = df1.copy()
# # print(df4.head(10))
# df9["SIMILARITY"] = 'Similarity Score ' + df9.head(value_pathway)["SIMILARITY"].round(2).astype(str)
# df9.reset_index(inplace=True)
# # df4 = df4.rename(columns={'Protein': 'symbol2'})
# # print(df4)
# # # Use df.query to get a subset of df1 based on ids in df2
# # subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # # Use merge to join the two DataFrames on id
# # result = pd.merge(subset, df2b, on='symbol2')
# # print(result)
# if value_pathway <= df_len:
# # Define the `text` column for labels and `href` column for links
# # Reset the index
# df16.reset_index(inplace=True)
#
# # Replace hyphens with spaces in the 'text' column
# df16['Pathway'] = df16['Pathway'].str.replace('-', ' ')
#
# # Set the 'text' column back as the index
# df16.set_index('Pathway', inplace=True)
# df16['text'] = df16.index
# df16['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
# '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df16['text']]
# df16['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df16['text']]
# assert isinstance(df16, object)
# df16['database'] = database_name
#
# # df11['name'] = [c for c in result['Approved name']]
#
# # Create the treemap using `px.treemap`
# fig = px.treemap(df16, path=[df16['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
# hover_name=(df9.head(value_pathway)['SIMILARITY']))
#
# fig.update(layout_coloraxis_showscale=False)
# fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig.update_annotations(visible=False)
# fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
# hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
# texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
# "<a href='%{customdata[0]}'>PubMed"
# "</a><br><br><a href='%{customdata[2]}'>Wikipedia"
# "</span></a>")
# fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["FloralWhite"])
# # # display the treemap in Streamlit
# # with treemap2:
#
# # st.pyplot(fig2)
# st.plotly_chart(fig, use_container_width=True)
#
# st.caption("Pathway designation and database provided by KEGG: https://www.genome.jp/kegg/pathway.html")
#
# csv = df1.head(value_pathway).to_csv().encode('utf-8')
# st.download_button(label=f"download top {value_pathway} pathways (csv)", data=csv,
# file_name=f'{database_name}_pathways.csv', mime='text/csv')
#
#
# else:
# st.warning(
# f"This selection exceeds the number of similar pathways related to {query} within the {database_name} corpus, please choose a lower number")
# st.markdown("---")
st.markdown("---")
# print()
# print("Human genes similar to " + str(query))
df1 = table.copy()
df2 = pd.read_csv('phytochemicals.csv')
m = df1.Word.isin(df2.phyto)
df1 = df1[m]
df1.rename(columns={'Word': 'Phytochemical'}, inplace=True)
df_len = len(df1)
# print(len(df1))
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# print(df1.head(50))
# print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
# Create the slider with increments of 5 up to 100
# Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
value_phyto = min(df1.shape[0], 100)
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_phyto} "
f"</span>Phytochemicals contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. "
f"Click on the squares to expand and also the Pubmed and Wikipedia links for more compound information</span></p></b>",
unsafe_allow_html=True)
df15 = df1.head(value_phyto).copy()
df15.index = (1 / df15.index) * 10000
sizes = df15.index.tolist()
df15.set_index('Phytochemical', inplace=True)
df8 = df1.copy()
# print(df4.head(10))
df8["SIMILARITY"] = 'Similarity Score ' + df8.head(value_phyto)["SIMILARITY"].round(2).astype(str)
df8.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_phyto <= df_len:
# Define the `text` column for labels and `href` column for links
# Reset the index
df15.reset_index(inplace=True)
# Replace hyphens with spaces in the 'text' column
df15['Phytochemical'] = df15['Phytochemical'].str.replace('-', ' ')
# Set the 'text' column back as the index
df15.set_index('Phytochemical', inplace=True)
df15['text'] = df15.index
df15['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df15['text']]
df15['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df15['text']]
assert isinstance(df15, object)
df15['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df15, path=[df15['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
hover_name=(df8.head(value_phyto)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>Wikipedia"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["LightSeaGreen"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
st.caption("Phytochemical designation and database provided by PhytoHub: https://phytohub.eu/")
csv = df1.head(value_phyto).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_phyto} phytochemicals (csv)", data=csv,
file_name=f'{database_name}_phytochemicals.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar pythochemicals related to {query} within the {database_name} corpus, please choose a lower number")
st.markdown("---")
# print()
# print("Human genes similar to " + str(query))
df1 = table.copy()
df2 = pd.read_csv('kegg_compounds_lowercase.csv')
m = df1.Word.isin(df2.compound)
df1 = df1[m]
df1.rename(columns={'Word': 'Compounds'}, inplace=True)
df_len = len(df1)
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# print(df1.head(50))
# print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
# Create the slider with increments of 5 up to 100
# Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
value_compound = min(df1.shape[0], 100)
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_compound} "
f"</span>Compounds contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. "
f"Click on the squares to expand and the Pubmed, Wikipedia, and KEGG links for more compound information (may take time to load)</span></p></b>",
unsafe_allow_html=True)
df12 = df1.head(value_compound).copy()
df12.index = (1 / df12.index) * 10000
sizes = df12.index.tolist()
df12.set_index('Compounds', inplace=True)
df5 = df1.copy()
# print(df4.head(10))
df5["SIMILARITY"] = 'Similarity Score ' + df5.head(value_compound)["SIMILARITY"].round(2).astype(str)
df5.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_compound <= df_len:
# Define the `text` column for labels and `href` column for links
# Reset the index
df12.reset_index(inplace=True)
# Replace hyphens with spaces in the 'text' column
df12['Compounds'] = df12['Compounds'].str.replace('-', ' ')
# Set the 'text' column back as the index
df12.set_index('Compounds', inplace=True)
df12['text'] = df12.index
df12['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df12['text']]
df12['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df12['text']]
df12['href3'] = [f'https://www.genome.jp/entry/{compound_id}' for compound_id in get_compound_ids(df12['text'])]
assert isinstance(df12, object)
df12['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df12, path=[df12['text']], values=sizes,
custom_data=['href', 'database', 'href2', 'text', 'href3'],
hover_name=(df5.head(value_compound)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>Wikipedia"
"</a><br><br><a href='%{customdata[4]}'>KEGG Compound Page"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["LightYellow"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
st.caption("Compound designation and database provided by KEGG: https://www.kegg.jp/kegg/compound/")
csv = df1.head(value_compound).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_compound} compounds (csv)", data=csv,
file_name=f'{database_name}_compounds.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus, please choose a lower number")
st.markdown("---")
def save_comment(comment):
with open('comments.txt', 'a') as f:
f.write(f'{comment}\n')
def save_comment_threaded(comment):
t = threading.Thread(target=save_comment, args=(comment,))
t.start()
st.title("Abstractalytics Web App")
st.write("We appreciate your feedback!")
user_comment = st.text_area("Please send us your anonymous remarks/suggestions about the Abstractalytics Web App: "
"(app will pause while we save your comments)")
if st.button("Submit"):
if user_comment:
save_comment_threaded(user_comment)
st.success("Your comment has been saved. Thank you for your feedback!")
else:
st.warning("Please enter a comment before submitting.")
st.markdown("---")
st.subheader("Cancer-related videos")
if query:
idlist = []
search_keyword = {query}
html = urllib.request.urlopen("https://www.youtube.com/@NCIgov/search?query=cancer")
html2 = urllib.request.urlopen("https://www.youtube.com/@CancerCenter/search?query=cancer")
html3 = urllib.request.urlopen("https://www.youtube.com/@NorthwesternMedicine/search?query=cancer")
html4 = urllib.request.urlopen("https://www.youtube.com/@TEDEd/search?query=cancer")
html5 = urllib.request.urlopen("https://www.youtube.com/@CancerResearchUK/search?query=cancer")
video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode())
video_ids2 = re.findall(r"watch\?v=(\S{11})", html2.read().decode())
video_ids3 = re.findall(r"watch\?v=(\S{11})", html3.read().decode())
video_ids4 = re.findall(r"watch\?v=(\S{11})", html4.read().decode())
video_ids5 = re.findall(r"watch\?v=(\S{11})", html5.read().decode())
for i in video_ids2:
video_ids.append(i)
for i in video_ids3:
video_ids.append(i)
for i in video_ids4:
video_ids.append(i)
for i in video_ids5:
video_ids.append(i)
random.shuffle(video_ids)
c1, c2, c3 = st.columns(3)
with c1:
st.video("https://www.youtube.com/watch?v=" + video_ids[0])
with c2:
st.video("https://www.youtube.com/watch?v=" + video_ids[1])
with c3:
st.video("https://www.youtube.com/watch?v=" + video_ids[2])
st.markdown("---")
# else:
# st.error("The password you entered is incorrect.")
|