Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -63,7 +63,7 @@ st.header(f":blue[{database_name} Pubmed corpus.]")
|
|
63 |
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
|
64 |
query = text_input_value
|
65 |
query = query.lower()
|
66 |
-
query = re.sub("[,.?!&*;:]", "", query)
|
67 |
matches = [" "]
|
68 |
if any([x in query for x in matches]):
|
69 |
st.write("Please only enter one term or a term without spaces")
|
@@ -171,9 +171,25 @@ if query:
|
|
171 |
print()
|
172 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
173 |
# time.sleep(2)
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
df10.index = (1 / df10.index)*10000
|
178 |
sizes = df10.index.tolist()
|
179 |
|
@@ -191,51 +207,62 @@ if query:
|
|
191 |
fig2.patch.set_facecolor('#CCFFFF')
|
192 |
#
|
193 |
df3 = df1.copy()
|
|
|
194 |
df3.reset_index(inplace=True)
|
195 |
df3 = df3.rename(columns={'Human Gene': 'symbol2'})
|
196 |
# Use df.query to get a subset of df1 based on ids in df2
|
197 |
-
subset = df3.head(
|
198 |
# Use merge to join the two DataFrames on id
|
199 |
result = pd.merge(subset, df2, on='symbol2')
|
200 |
# Show the result
|
201 |
# print(result)
|
202 |
|
203 |
df = df10
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10.index]
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
226 |
-
texttemplate="<b>%{label}</b><br
|
|
|
|
|
227 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
228 |
-
"</a>")
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
# st.pyplot(fig2)
|
234 |
-
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
|
|
|
238 |
mime='text/csv')
|
|
|
|
|
|
|
239 |
st.markdown("---")
|
240 |
st.subheader("Cancer-related videos")
|
241 |
if query:
|
|
|
63 |
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
|
64 |
query = text_input_value
|
65 |
query = query.lower()
|
66 |
+
query = re.sub("[,.?!&*;: ]", "", query)
|
67 |
matches = [" "]
|
68 |
if any([x in query for x in matches]):
|
69 |
st.write("Please only enter one term or a term without spaces")
|
|
|
171 |
print()
|
172 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
173 |
# time.sleep(2)
|
174 |
+
# Create the slider with increments of 5 up to 100
|
175 |
+
|
176 |
+
st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap with the slider below to visualize "
|
177 |
+
f"<span style='color:red; font-style: italic;'>genes</span> contextually "
|
178 |
+
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
179 |
+
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
180 |
+
unsafe_allow_html=True)
|
181 |
+
value = st.slider("", 0, 100, step=5)
|
182 |
+
if value > 0:
|
183 |
+
# st.subheader(f"Top {value} genes closely related to {query}: "
|
184 |
+
# f"Click on the Pubmed and NCBI links for more gene information")
|
185 |
+
|
186 |
+
st.markdown(
|
187 |
+
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value} "
|
188 |
+
f"</span>genes similar to "
|
189 |
+
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
|
190 |
+
unsafe_allow_html=True)
|
191 |
+
|
192 |
+
df10 = df1.head(value)
|
193 |
df10.index = (1 / df10.index)*10000
|
194 |
sizes = df10.index.tolist()
|
195 |
|
|
|
207 |
fig2.patch.set_facecolor('#CCFFFF')
|
208 |
#
|
209 |
df3 = df1.copy()
|
210 |
+
df3["SIMILARITY"] = 'Similarity Score ' + df3.head(value)["SIMILARITY"].round(2).astype(str)
|
211 |
df3.reset_index(inplace=True)
|
212 |
df3 = df3.rename(columns={'Human Gene': 'symbol2'})
|
213 |
# Use df.query to get a subset of df1 based on ids in df2
|
214 |
+
subset = df3.head(value).query('symbol2 in @df2.symbol2')
|
215 |
# Use merge to join the two DataFrames on id
|
216 |
result = pd.merge(subset, df2, on='symbol2')
|
217 |
# Show the result
|
218 |
# print(result)
|
219 |
|
220 |
df = df10
|
221 |
+
try:
|
222 |
+
# Define the `text` column for labels and `href` column for links
|
223 |
+
df['text'] = df10.index
|
224 |
+
df['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
225 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10.index]
|
226 |
+
df['href2'] = [f'https://www.ncbi.nlm.nih.gov/gene/?term=' + c for c in df10.index]
|
227 |
+
|
228 |
+
df['name'] = [c for c in result['Approved name']]
|
229 |
+
|
230 |
+
df['database'] = database_name
|
231 |
+
|
232 |
+
# print(df['name'])
|
233 |
+
|
234 |
+
# Create the treemap using `px.treemap`
|
235 |
+
fig = px.treemap(df, path=[df10.index], values=sizes,
|
236 |
+
custom_data=['href', 'name', 'database', 'href2'], hover_name=(df3.head(value)['SIMILARITY']))
|
237 |
+
|
238 |
+
fig.update(layout_coloraxis_showscale=False)
|
239 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
240 |
+
fig.update_annotations(visible=False)
|
241 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
242 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
243 |
+
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{label}</span></b><br><span "
|
244 |
+
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
245 |
+
"<a href='%{customdata[0]}'>PubMed"
|
246 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
247 |
+
"</span></a>")
|
248 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightblue"])
|
249 |
+
# # display the treemap in Streamlit
|
250 |
+
# with treemap2:
|
251 |
+
|
252 |
# st.pyplot(fig2)
|
253 |
+
st.plotly_chart(fig, use_container_width=True)
|
254 |
+
|
255 |
+
st.caption("Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
256 |
+
st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
|
257 |
+
|
258 |
|
259 |
+
|
260 |
+
csv = df1.head(value).to_csv().encode('utf-8')
|
261 |
+
st.download_button(label=f"download top {value} genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
262 |
mime='text/csv')
|
263 |
+
except:
|
264 |
+
st.warning(
|
265 |
+
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|
266 |
st.markdown("---")
|
267 |
st.subheader("Cancer-related videos")
|
268 |
if query:
|