File size: 50,805 Bytes
a60f1c0
 
 
 
 
 
 
 
6384d58
7fa25f7
efb47b3
 
4d9b5c3
 
 
a74a30d
 
a566db2
 
84e165d
27f90be
16ed767
 
a60f1c0
84e165d
7513911
a60f1c0
 
 
 
 
 
 
 
 
 
 
57cb1ac
 
a60f1c0
 
 
 
87de8af
a60f1c0
 
 
eb8c873
 
 
27f90be
7513911
 
 
 
 
 
 
eb8c873
27f90be
efb47b3
 
87de8af
e509f96
87de8af
e509f96
 
 
 
 
bc15b27
 
 
 
efb47b3
a60f1c0
 
 
a2d2271
 
373b768
 
 
 
 
 
a2d2271
 
16ed767
 
 
 
 
 
 
a2d2271
 
16ed767
 
 
 
efb47b3
 
a60f1c0
 
 
611f47d
 
 
 
 
84e165d
 
 
 
 
 
 
 
8e5f90a
a60f1c0
 
 
eb8c873
a566db2
 
 
 
 
eb8c873
 
 
a60f1c0
 
a2d2271
 
 
 
 
 
 
 
 
a60f1c0
a2d2271
 
 
a60f1c0
a2d2271
 
efb47b3
eb8c873
 
 
 
 
 
57cb1ac
eb8c873
 
efb47b3
a2d2271
eb8c873
a566db2
5cfd2b7
76771b5
 
 
 
5cfd2b7
 
76771b5
5cfd2b7
 
 
 
 
 
76771b5
 
 
 
5cfd2b7
76771b5
5cfd2b7
76771b5
 
 
 
 
5cfd2b7
 
 
76771b5
 
5cfd2b7
76771b5
27f90be
5cfd2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76771b5
 
a566db2
eb8c873
 
a60f1c0
 
a2d2271
a60f1c0
eb8c873
 
 
 
 
 
 
 
a60f1c0
eb8c873
a60f1c0
 
eb8c873
 
 
 
 
 
 
a60f1c0
eb8c873
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
 
 
eb8c873
 
 
 
 
 
 
 
 
 
efb47b3
87de8af
 
 
1ca7717
 
 
a60f1c0
 
1ca7717
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
1ca7717
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
1ca7717
 
a60f1c0
1ca7717
 
 
 
 
87de8af
 
 
57cb1ac
 
 
 
 
a60f1c0
bc15b27
57cb1ac
 
 
a60f1c0
57cb1ac
a60f1c0
57cb1ac
a60f1c0
57cb1ac
 
a60f1c0
57cb1ac
 
 
a2d2271
57cb1ac
87de8af
 
 
57cb1ac
a566db2
a2d2271
 
 
 
87de8af
 
 
a566db2
 
 
 
57cb1ac
a60f1c0
a566db2
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
4d9b5c3
 
 
 
 
a566db2
a2d2271
a566db2
a60f1c0
 
 
 
a566db2
 
 
 
 
a60f1c0
a566db2
 
a60f1c0
a566db2
 
a2d2271
a566db2
a60f1c0
 
 
 
a566db2
 
 
 
 
a60f1c0
a566db2
 
a60f1c0
a566db2
 
a2d2271
a566db2
 
 
 
a60f1c0
a566db2
 
 
 
 
 
 
 
 
a2d2271
a566db2
a2d2271
 
a60f1c0
a566db2
 
ce399c7
a566db2
 
 
 
 
 
e6b6548
 
 
a60f1c0
e6b6548
 
ce399c7
e6b6548
 
 
 
a60f1c0
57cb1ac
87de8af
a60f1c0
 
e6b6548
 
87de8af
a60f1c0
e6b6548
 
 
 
 
a60f1c0
e6b6548
 
87de8af
e6b6548
a60f1c0
e6b6548
 
 
 
 
 
 
a60f1c0
 
 
e6b6548
 
 
 
 
 
 
 
 
87de8af
e6b6548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
eb8c873
 
373b768
eb8c873
373b768
eb8c873
373b768
 
eb8c873
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
 
a2d2271
87de8af
 
 
a60f1c0
 
87de8af
a60f1c0
 
 
 
 
 
 
 
 
 
 
bc15b27
a60f1c0
 
 
 
 
87de8af
a60f1c0
 
 
 
 
 
 
87de8af
a60f1c0
 
 
 
 
 
 
 
87de8af
ce399c7
 
 
a60f1c0
 
 
 
87de8af
a60f1c0
 
ce399c7
 
a60f1c0
ce399c7
a60f1c0
 
 
 
 
 
 
 
 
 
 
 
 
87de8af
ce399c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
 
 
 
ce399c7
 
 
 
a60f1c0
 
 
87de8af
ce399c7
 
 
 
 
 
87de8af
ce399c7
 
 
 
 
 
 
87de8af
a60f1c0
ce399c7
a60f1c0
 
ce399c7
a60f1c0
ce399c7
a60f1c0
 
 
 
 
 
 
ce399c7
a60f1c0
 
 
 
 
 
 
 
 
 
 
 
 
 
87de8af
a60f1c0
87de8af
bc15b27
ce399c7
bc15b27
 
 
 
 
 
 
 
 
 
 
 
 
87de8af
 
 
 
 
ce399c7
 
87de8af
ce399c7
 
 
 
bc15b27
ce399c7
 
 
bc15b27
ce399c7
bc15b27
 
ce399c7
 
 
bc15b27
ce399c7
bc15b27
 
ce399c7
 
 
 
 
bc15b27
 
ce399c7
 
a60f1c0
 
 
 
 
87de8af
 
 
57cb1ac
 
 
a60f1c0
4d9b5c3
57cb1ac
 
 
 
 
 
 
 
 
87de8af
57cb1ac
 
 
 
a60f1c0
 
57cb1ac
a60f1c0
 
 
 
57cb1ac
 
a60f1c0
 
 
87de8af
57cb1ac
a60f1c0
 
 
 
87de8af
a60f1c0
 
57cb1ac
a60f1c0
 
 
 
 
 
 
57cb1ac
4d9b5c3
 
 
 
a60f1c0
 
4d9b5c3
 
57cb1ac
 
 
 
4d9b5c3
57cb1ac
 
87de8af
a60f1c0
 
57cb1ac
 
4d9b5c3
 
 
 
 
 
15b9748
e6b6548
 
 
57cb1ac
 
e6b6548
87de8af
 
 
57cb1ac
 
 
 
 
 
84e165d
57cb1ac
 
 
 
 
 
 
 
 
 
 
a60f1c0
57cb1ac
 
 
 
 
 
a60f1c0
57cb1ac
 
 
a60f1c0
57cb1ac
 
 
 
 
 
 
 
 
 
 
 
a60f1c0
57cb1ac
84e165d
57cb1ac
 
 
a60f1c0
57cb1ac
 
a60f1c0
57cb1ac
 
 
 
 
 
 
 
a60f1c0
57cb1ac
611f47d
87de8af
 
 
a2d2271
 
a566db2
912d5b8
 
 
a60f1c0
912d5b8
a60f1c0
912d5b8
a60f1c0
 
 
 
87de8af
 
 
912d5b8
8ef7489
912d5b8
a2d2271
 
8ef7489
a2d2271
8ef7489
 
a566db2
912d5b8
e28f12c
 
a60f1c0
 
 
912d5b8
 
 
 
8ef7489
912d5b8
8ef7489
 
912d5b8
 
 
 
a60f1c0
 
 
912d5b8
 
 
 
8ef7489
912d5b8
8ef7489
 
912d5b8
 
 
 
a60f1c0
 
 
912d5b8
 
 
 
8ef7489
a60f1c0
8ef7489
 
09a0f4d
912d5b8
 
 
 
a60f1c0
 
 
a566db2
1f46770
912d5b8
8ef7489
 
 
fcd1f06
b7a2a27
8ef7489
bb0d660
fcd1f06
912d5b8
 
87de8af
57cb1ac
 
 
87de8af
 
912d5b8
8ef7489
87de8af
a60f1c0
8ef7489
 
16ed767
 
 
 
8ef7489
16ed767
8ef7489
 
 
16ed767
 
84e165d
16ed767
 
a60f1c0
 
 
a2d2271
57cb1ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
import os
import argparse
import logging
import pickle
import threading
import time
from datetime import datetime, timedelta
from collections import defaultdict
import csv 
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from scipy.interpolate import interp1d
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr

try:
    import cdsapi
    CDSAPI_AVAILABLE = True
except ImportError:
    CDSAPI_AVAILABLE = False

import tropycal.tracks as tracks

# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path

# Update data paths for Huggingface Spaces
TEMP_DIR = tempfile.gettempdir()
DATA_PATH = os.environ.get('DATA_PATH', TEMP_DIR)

# Ensure directory exists
os.makedirs(DATA_PATH, exist_ok=True)

# Update your file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')

# IBTrACS settings (for typhoon options)
BASIN_FILES = {
    'EP': 'ibtracs.EP.list.v04r01.csv',
    'NA': 'ibtracs.NA.list.v04r01.csv',
    'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1

# -----------------------------
# Color Maps and Standards
# -----------------------------
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'Tropical Storm': 'rgb(0, 0, 255)',
    'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

# -----------------------------
# Season and Regions
# -----------------------------
season_months = {
    'all': list(range(1, 13)),
    'summer': [6, 7, 8],
    'winter': [12, 1, 2]
}
regions = {
    "Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1},
    "Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125},
    "Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150},
    "China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135},
    "Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
    "Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
}

# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------
def download_oni_file(url, filename):
    response = requests.get(url)
    response.raise_for_status()
    with open(filename, 'wb') as f:
        f.write(response.content)
    return True

def convert_oni_ascii_to_csv(input_file, output_file):
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
                       'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
    with open(input_file, 'r') as f:
        lines = f.readlines()[1:]
        for line in lines:
            parts = line.split()
            if len(parts) >= 4:
                season, year, anom = parts[0], parts[1], parts[-1]
                if season in season_to_month:
                    month = season_to_month[season]
                    if season == 'DJF':
                        year = str(int(year)-1)
                    data[year][month-1] = anom
    with open(output_file, 'w', newline='') as f:
        writer = csv.writer(f)
        writer.writerow(['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
        for year in sorted(data.keys()):
            writer.writerow([year] + data[year])

def update_oni_data():
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    if download_oni_file(url, temp_file):
        if not os.path.exists(input_file) or not os.path.exists(output_file):
            os.replace(temp_file, input_file)
            convert_oni_ascii_to_csv(input_file, output_file)
        else:
            os.remove(temp_file)

def load_data(oni_path, typhoon_path):
    # Create default empty DataFrames with minimum structure
    oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 
                           'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 
                           'Oct': [], 'Nov': [], 'Dec': []})
    
    # Try to load ONI data or create it
    if not os.path.exists(oni_path):
        logging.warning(f"ONI data file not found: {oni_path}")
        update_oni_data()
    
    try:
        oni_data = pd.read_csv(oni_path)
    except Exception as e:
        logging.error(f"Error loading ONI data: {e}")
        update_oni_data()
        try:
            oni_data = pd.read_csv(oni_path)
        except Exception as e:
            logging.error(f"Still can't load ONI data: {e}")
    
    # For typhoon data, focus on getting WP data
    if os.path.exists(typhoon_path):
        try:
            typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
            typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
            typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
            # Log WP data count
            wp_count = len(typhoon_data[typhoon_data['SID'].str.startswith('WP')])
            logging.info(f"Loaded {wp_count} Western Pacific typhoon records")
        except Exception as e:
            logging.error(f"Error loading typhoon data: {e}")
            typhoon_data = pd.DataFrame()
    else:
        logging.error(f"Typhoon data file not found: {typhoon_path}")
        # Download WP typhoon data directly from IBTrACS if available
        try:
            if LOCAL_IBTRACS_PATH and os.path.exists(LOCAL_IBTRACS_PATH):
                logging.info("Loading WP data from local IBTrACS file")
                wp_data = pd.read_csv(LOCAL_IBTRACS_PATH, low_memory=False)
                typhoon_data = wp_data
                logging.info(f"Loaded {len(typhoon_data)} WP records from IBTrACS")
            else:
                # Try to download WP file if not exists
                logging.info("Downloading WP basin file...")
                response = requests.get(IBTRACS_BASE_URL + BASIN_FILES['WP'])
                if response.status_code == 200:
                    os.makedirs(os.path.dirname(LOCAL_IBTRACS_PATH), exist_ok=True)
                    with open(LOCAL_IBTRACS_PATH, 'wb') as f:
                        f.write(response.content)
                    wp_data = pd.read_csv(LOCAL_IBTRACS_PATH, low_memory=False)
                    typhoon_data = wp_data
                    logging.info(f"Downloaded and loaded {len(typhoon_data)} WP records")
        except Exception as e:
            logging.error(f"Failed to load or download WP data: {e}")
            # Create minimal WP sample data to prevent crashes
            typhoon_data = pd.DataFrame({
                'SID': ['WP012000', 'WP022000', 'WP032000'], 
                'ISO_TIME': [pd.Timestamp('2000-01-01'), pd.Timestamp('2000-02-01'), pd.Timestamp('2000-03-01')],
                'NAME': ['SAMPLE_WP1', 'SAMPLE_WP2', 'SAMPLE_WP3'],
                'SEASON': [2000, 2000, 2000],
                'LAT': [20.0, 21.0, 22.0],
                'LON': [140.0, 141.0, 142.0],
                'USA_WIND': [50.0, 60.0, 70.0],
                'USA_PRES': [990.0, 980.0, 970.0]
            })
            logging.warning("Created minimal Western Pacific sample data to prevent crashes")
    
    return oni_data, typhoon_data

def process_oni_data(oni_data):
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
                 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
        'LAT':'first','LON':'first'
    }).reset_index()
    typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
    typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    return pd.merge(typhoon_max, oni_long, on=['Year','Month'])

def categorize_typhoon(wind_speed):
    if wind_speed >= 137:
        return 'C5 Super Typhoon'
    elif wind_speed >= 113:
        return 'C4 Very Strong Typhoon'
    elif wind_speed >= 96:
        return 'C3 Strong Typhoon'
    elif wind_speed >= 83:
        return 'C2 Typhoon'
    elif wind_speed >= 64:
        return 'C1 Typhoon'
    elif wind_speed >= 34:
        return 'Tropical Storm'
    else:
        return 'Tropical Depression'

def classify_enso_phases(oni_value):
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# -----------------------------
# Regression Functions
# -----------------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
    data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    model = sm.Logit(y, X).fit(disp=0)
    beta_1 = model.params['ONI']
    exp_beta_1 = np.exp(beta_1)
    p_value = model.pvalues['ONI']
    return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
    data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    model = sm.Logit(y, X).fit(disp=0)
    beta_1 = model.params['ONI']
    exp_beta_1 = np.exp(beta_1)
    p_value = model.pvalues['ONI']
    return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
    data['western_typhoon'] = (data['LON']<=140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    model = sm.OLS(y, sm.add_constant(X)).fit()
    beta_1 = model.params['ONI']
    exp_beta_1 = np.exp(beta_1)
    p_value = model.pvalues['ONI']
    return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

# -----------------------------
# IBTrACS Data Loading
# -----------------------------
def load_ibtracs_data():
    ibtracs_data = {}
    for basin, filename in BASIN_FILES.items():
        local_path = os.path.join(DATA_PATH, filename)
        if not os.path.exists(local_path):
            logging.info(f"Downloading {basin} basin file...")
            response = requests.get(IBTRACS_BASE_URL+filename)
            response.raise_for_status()
            with open(local_path, 'wb') as f:
                f.write(response.content)
            logging.info(f"Downloaded {basin} basin file.")
        try:
            logging.info(f"--> Starting to read in IBTrACS data for basin {basin}")
            ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path)
            logging.info(f"--> Completed reading in IBTrACS data for basin {basin}")
            ibtracs_data[basin] = ds
        except ValueError as e:
            logging.warning(f"Skipping basin {basin} due to error: {e}")
            ibtracs_data[basin] = None
    return ibtracs_data

ibtracs = load_ibtracs_data()

# -----------------------------
# Load & Process Data
# -----------------------------
update_oni_data()
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)

# -----------------------------
# Visualization Functions
# -----------------------------
def generate_typhoon_tracks(filtered_data, typhoon_search):
    fig = go.Figure()
    for sid in filtered_data['SID'].unique():
        storm_data = filtered_data[filtered_data['SID'] == sid]
        phase = storm_data['ENSO_Phase'].iloc[0]
        color = {'El Nino':'red','La Nina':'blue','Neutral':'green'}.get(phase, 'black')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
        ))
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            storm_data = filtered_data[mask]
            fig.add_trace(go.Scattergeo(
                lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
                name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
            ))
    fig.update_layout(
        title='Typhoon Tracks',
        geo=dict(projection_type='natural earth', showland=True),
        height=700
    )
    return fig

def generate_wind_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Wind Speed vs ONI',
                     labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    return fig

def generate_pressure_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Pressure vs ONI',
                     labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    return fig

def generate_regression_analysis(filtered_data):
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1,1)
        y = filtered_data['ONI']
        model = sm.OLS(y, sm.add_constant(X)).fit()
        y_pred = model.predict(sm.add_constant(X))
        fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
        slope = model.params[1]
        slopes_text = f"All Years Slope: {slope:.4f}"
    else:
        slopes_text = "Insufficient data for regression"
    return fig, slopes_text

def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
    wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
    pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
    regression_fig, slopes_text = generate_regression_analysis(filtered_data)
    return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text

def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    unique_storms = filtered_data['SID'].unique()
    count = len(unique_storms)
    fig = go.Figure()
    for sid in unique_storms:
        storm_data = typhoon_data[typhoon_data['SID']==sid]
        name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
        basin = storm_data['SID'].iloc[0][:2]  # First 2 characters often denote basin
        storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
        color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=f"{name} ({basin})",
            line=dict(width=1.5, color=color), hoverinfo="name"
        ))
    if typhoon_search:
        search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if search_mask.any():
            for sid in typhoon_data[search_mask]['SID'].unique():
                storm_data = typhoon_data[typhoon_data['SID']==sid]
                fig.add_trace(go.Scattergeo(
                    lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
                    name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
                    line=dict(width=3, color='yellow'),
                    marker=dict(size=5), hoverinfo="name"
                ))
    fig.update_layout(
        title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
        geo=dict(
            projection_type='natural earth',
            showland=True,
            showcoastlines=True,
            landcolor='rgb(243,243,243)',
            countrycolor='rgb(204,204,204)',
            coastlinecolor='rgb(204,204,204)',
            center=dict(lon=140, lat=20),
            projection_scale=3
        ),
        legend_title="Typhoons by ENSO Phase",
        showlegend=True,
        height=700
    )
    fig.add_annotation(
        x=0.02, y=0.98, xref="paper", yref="paper",
        text="Red: El Niño, Blue: La Nina, Green: Neutral",
        showarrow=False, align="left",
        bgcolor="rgba(255,255,255,0.8)"
    )
    return fig, f"Total typhoons displayed: {count}"

def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
    regression = perform_wind_regression(start_year, start_month, end_year, end_month)
    return results[1], regression

def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
    regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
    return results[2], regression

def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
    regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
    return results[3], results[4], regression

def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
    if standard=='taiwan':
        wind_speed_ms = wind_speed * 0.514444
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
        return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
    else:
        if wind_speed >= 137:
            return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
        elif wind_speed >= 83:
            return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
        elif wind_speed >= 64:
            return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
        elif wind_speed >= 34:
            return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
        return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']

# -----------------------------
# Updated TSNE Cluster Function with Mean Curves
# -----------------------------
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
    try:
        # Merge raw typhoon data with ONI so each storm has multiple observations.
        raw_data = typhoon_data.copy()
        raw_data['Year'] = raw_data['ISO_TIME'].dt.year
        raw_data['Month'] = raw_data['ISO_TIME'].dt.strftime('%m')
        merged_raw = pd.merge(raw_data, process_oni_data(oni_data), on=['Year','Month'], how='left')
        
        # Filter by date
        start_date = datetime(start_year, start_month, 1)
        end_date = datetime(end_year, end_month, 28)
        merged_raw = merged_raw[(merged_raw['ISO_TIME'] >= start_date) & (merged_raw['ISO_TIME'] <= end_date)]
        logging.info(f"Total points after date filtering: {merged_raw.shape[0]}")
        
        # Filter by ENSO phase if specified
        merged_raw['ENSO_Phase'] = merged_raw['ONI'].apply(classify_enso_phases)
        if enso_value != 'all':
            merged_raw = merged_raw[merged_raw['ENSO_Phase'] == enso_value.capitalize()]
        logging.info(f"Total points after ENSO filtering: {merged_raw.shape[0]}")
        
        # Regional filtering for Western Pacific
        wp_data = merged_raw[(merged_raw['LON'] >= 100) & (merged_raw['LON'] <= 180) &
                             (merged_raw['LAT'] >= 0) & (merged_raw['LAT'] <= 40)]
        logging.info(f"Total points after WP regional filtering: {wp_data.shape[0]}")
        if wp_data.empty:
            logging.info("WP regional filter returned no data; using all filtered data.")
            wp_data = merged_raw
        
        # Group by storm ID so each storm has multiple observations
        all_storms_data = []
        for sid, group in wp_data.groupby('SID'):
            group = group.sort_values('ISO_TIME')
            times = pd.to_datetime(group['ISO_TIME']).values
            lats = group['LAT'].astype(float).values
            lons = group['LON'].astype(float).values
            if len(lons) < 2:
                continue
            # Also extract wind and pressure curves
            wind = group['USA_WIND'].astype(float).values if 'USA_WIND' in group.columns else None
            pres = group['USA_PRES'].astype(float).values if 'USA_PRES' in group.columns else None
            all_storms_data.append((sid, lons, lats, times, wind, pres))
        logging.info(f"Storms available for TSNE after grouping: {len(all_storms_data)}")
        if not all_storms_data:
            return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms for clustering."
        
        # Interpolate each storm's route, wind, and pressure to a common length
        max_length = max(len(item[1]) for item in all_storms_data)
        route_vectors = []
        wind_curves = []
        pres_curves = []
        storm_ids = []
        for sid, lons, lats, times, wind, pres in all_storms_data:
            t = np.linspace(0, 1, len(lons))
            t_new = np.linspace(0, 1, max_length)
            try:
                lon_interp = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
                lat_interp = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
            except Exception as ex:
                logging.error(f"Interpolation error for storm {sid}: {ex}")
                continue
            route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
            if np.isnan(route_vector).any():
                continue
            route_vectors.append(route_vector)
            storm_ids.append(sid)
            # Interpolate wind and pressure if available
            if wind is not None and len(wind) >= 2:
                try:
                    wind_interp = interp1d(t, wind, kind='linear', fill_value='extrapolate')(t_new)
                except Exception as ex:
                    logging.error(f"Wind interpolation error for storm {sid}: {ex}")
                    wind_interp = np.full(max_length, np.nan)
            else:
                wind_interp = np.full(max_length, np.nan)
            if pres is not None and len(pres) >= 2:
                try:
                    pres_interp = interp1d(t, pres, kind='linear', fill_value='extrapolate')(t_new)
                except Exception as ex:
                    logging.error(f"Pressure interpolation error for storm {sid}: {ex}")
                    pres_interp = np.full(max_length, np.nan)
            else:
                pres_interp = np.full(max_length, np.nan)
            wind_curves.append(wind_interp)
            pres_curves.append(pres_interp)
        logging.info(f"Storms with valid route vectors: {len(route_vectors)}")
        if len(route_vectors) == 0:
            return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation."
        
        route_vectors = np.array(route_vectors)
        wind_curves = np.array(wind_curves)
        pres_curves = np.array(pres_curves)
        
        # Run TSNE on route vectors
        tsne = TSNE(n_components=2, random_state=42, verbose=1)
        tsne_results = tsne.fit_transform(route_vectors)
        
        # Dynamic DBSCAN: choose eps to yield roughly 5 to 20 clusters
        selected_labels = None
        selected_eps = None
        for eps in np.linspace(1.0, 10.0, 91):
            dbscan = DBSCAN(eps=eps, min_samples=3)
            labels = dbscan.fit_predict(tsne_results)
            clusters = set(labels) - {-1}
            if 5 <= len(clusters) <= 20:
                selected_labels = labels
                selected_eps = eps
                break
        if selected_labels is None:
            selected_eps = 5.0
            dbscan = DBSCAN(eps=selected_eps, min_samples=3)
            selected_labels = dbscan.fit_predict(tsne_results)
        logging.info(f"Selected DBSCAN eps: {selected_eps:.2f} yielding {len(set(selected_labels)-{-1})} clusters.")
        
        # TSNE scatter plot
        fig_tsne = go.Figure()
        colors = px.colors.qualitative.Safe
        unique_labels = sorted(set(selected_labels) - {-1})
        for i, label in enumerate(unique_labels):
            indices = np.where(selected_labels == label)[0]
            fig_tsne.add_trace(go.Scatter(
                x=tsne_results[indices, 0],
                y=tsne_results[indices, 1],
                mode='markers',
                marker=dict(color=colors[i % len(colors)]),
                name=f"Cluster {label}"
            ))
        noise_indices = np.where(selected_labels == -1)[0]
        if len(noise_indices) > 0:
            fig_tsne.add_trace(go.Scatter(
                x=tsne_results[noise_indices, 0],
                y=tsne_results[noise_indices, 1],
                mode='markers',
                marker=dict(color='grey'),
                name='Noise'
            ))
        fig_tsne.update_layout(
            title="t-SNE of Storm Routes",
            xaxis_title="t-SNE Dim 1",
            yaxis_title="t-SNE Dim 2"
        )
        
        # For each cluster, compute mean route, and compute mean wind and pressure curves along normalized route index.
        fig_routes = go.Figure()
        cluster_stats = []  # To hold mean curves per cluster
        for i, label in enumerate(unique_labels):
            indices = np.where(selected_labels == label)[0]
            cluster_ids = [storm_ids[j] for j in indices]
            cluster_vectors = route_vectors[indices, :]
            mean_vector = np.mean(cluster_vectors, axis=0)
            mean_route = mean_vector.reshape((max_length, 2))
            mean_lon = mean_route[:, 0]
            mean_lat = mean_route[:, 1]
            fig_routes.add_trace(go.Scattergeo(
                lon=mean_lon,
                lat=mean_lat,
                mode='lines',
                line=dict(width=4, color=colors[i % len(colors)]),
                name=f"Cluster {label} Mean Route"
            ))
            # Retrieve raw wind and pressure curves for storms in this cluster
            cluster_winds = wind_curves[indices, :]
            cluster_pres = pres_curves[indices, :]
            mean_wind_curve = np.nanmean(cluster_winds, axis=0)
            mean_pres_curve = np.nanmean(cluster_pres, axis=0)
            cluster_stats.append((label, mean_wind_curve, mean_pres_curve))
        
        # Create a cluster stats plot with curves vs normalized route index (0 to 1)
        x_axis = np.linspace(0, 1, max_length)
        fig_stats = make_subplots(rows=2, cols=1, shared_xaxes=True,
                                  subplot_titles=("Mean Wind Speed (knots)", "Mean MSLP (hPa)"))
        for i, (label, wind_curve, pres_curve) in enumerate(cluster_stats):
            fig_stats.add_trace(go.Scatter(
                x=x_axis,
                y=wind_curve,
                mode='lines',
                line=dict(width=2, color=colors[i % len(colors)]),
                name=f"Cluster {label} Mean Wind"
            ), row=1, col=1)
            fig_stats.add_trace(go.Scatter(
                x=x_axis,
                y=pres_curve,
                mode='lines',
                line=dict(width=2, color=colors[i % len(colors)]),
                name=f"Cluster {label} Mean MSLP"
            ), row=2, col=1)
        fig_stats.update_layout(
            title="Cluster Mean Curves",
            xaxis_title="Normalized Route Index",
            yaxis_title="Mean Wind Speed (knots)",
            xaxis2_title="Normalized Route Index",
            yaxis2_title="Mean MSLP (hPa)",
            showlegend=True
        )
        
        info = f"TSNE clustering complete. Selected eps: {selected_eps:.2f}. Clusters: {len(unique_labels)}."
        return fig_tsne, fig_routes, fig_stats, info
    except Exception as e:
        logging.error(f"Error in TSNE clustering: {e}")
        return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), f"Error in TSNE clustering: {e}"

# -----------------------------
# Animation Functions Using Processed CSV & Stock Map
# -----------------------------
def generate_track_video_from_csv(year, storm_id, standard):
    storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy()
    if storm_df.empty:
        logging.error(f"No data found for storm: {storm_id}")
        return None
    storm_df = storm_df.sort_values('ISO_TIME')
    lats = storm_df['LAT'].astype(float).values
    lons = storm_df['LON'].astype(float).values
    times = pd.to_datetime(storm_df['ISO_TIME']).values
    if 'USA_WIND' in storm_df.columns:
        winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values
    else:
        winds = np.full(len(lats), np.nan)
    storm_name = storm_df['NAME'].iloc[0]
    basin = storm_df['SID'].iloc[0][:2]  # Use first 2 characters as basin code
    season = storm_df['SEASON'].iloc[0]
    
    min_lat, max_lat = np.min(lats), np.max(lats)
    min_lon, max_lon = np.min(lons), np.max(lons)
    lat_padding = max((max_lat - min_lat)*0.3, 5)
    lon_padding = max((max_lon - min_lon)*0.3, 5)
    
    fig = plt.figure(figsize=(12,6), dpi=100)
    ax = plt.axes([0.05, 0.05, 0.60, 0.85],
                  projection=ccrs.PlateCarree(central_longitude=180))
    ax.stock_img()
    ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding],
                  crs=ccrs.PlateCarree())
    ax.coastlines(resolution='50m', color='black', linewidth=1)
    gl = ax.gridlines(draw_labels=True, color='gray', alpha=0.4, linestyle='--')
    gl.top_labels = gl.right_labels = False
    ax.set_title(f"{year} {storm_name} ({basin}) - {season}", fontsize=14)
    
    line, = ax.plot([], [], transform=ccrs.PlateCarree(), color='blue', linewidth=2)
    point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree())
    date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10,
                        bbox=dict(facecolor='white', alpha=0.8))
    # Display storm name and basin in a dynamic sidebar
    storm_info_text = fig.text(0.70, 0.60, '', fontsize=10,
                               bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))
    
    from matplotlib.lines import Line2D
    standard_dict = atlantic_standard if standard=='atlantic' else taiwan_standard
    legend_elements = [Line2D([0],[0], marker='o', color='w', label=cat,
                              markerfacecolor=details['hex'], markersize=8)
                       for cat, details in standard_dict.items()]
    ax.legend(handles=legend_elements, title="Storm Categories",
              loc='upper right', fontsize=9)
    
    def init():
        line.set_data([], [])
        point.set_data([], [])
        date_text.set_text('')
        storm_info_text.set_text('')
        return line, point, date_text, storm_info_text

    def update(frame):
        line.set_data(lons[:frame+1], lats[:frame+1])
        point.set_data([lons[frame]], [lats[frame]])
        wind_speed = winds[frame] if frame < len(winds) else np.nan
        category, color = categorize_typhoon_by_standard(wind_speed, standard)
        point.set_color(color)
        dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M')
        date_text.set_text(dt_str)
        info_str = (f"Name: {storm_name}\nBasin: {basin}\nDate: {dt_str}\nWind: {wind_speed:.1f} kt\nCategory: {category}")
        storm_info_text.set_text(info_str)
        return line, point, date_text, storm_info_text

    ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times),
                                  interval=200, blit=True, repeat=True)
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
    writer = animation.FFMpegWriter(fps=5, bitrate=1800)
    ani.save(temp_file.name, writer=writer)
    plt.close(fig)
    return temp_file.name

def simplified_track_video(year, basin, typhoon, standard):
    if not typhoon:
        return None
    storm_id = typhoon.split('(')[-1].strip(')')
    return generate_track_video_from_csv(year, storm_id, standard)

# -----------------------------
# Typhoon Options Update Functions
# -----------------------------
basin_to_prefix = {
    "All Basins": "all",
    "NA - North Atlantic": "NA",
    "EP - Eastern North Pacific": "EP",
    "WP - Western North Pacific": "WP"
}

def update_typhoon_options(year, basin):
    try:
        if basin == "All Basins":
            summaries = []
            for data in ibtracs.values():
                if data is not None:
                    season_data = data.get_season(int(year))
                    if season_data.summary().empty:
                        continue
                    summaries.append(season_data.summary())
            if len(summaries) == 0:
                logging.error("No storms found for given year and basin.")
                return gr.update(choices=[], value=None)
            combined_summary = pd.concat(summaries, ignore_index=True)
        else:
            prefix = basin_to_prefix.get(basin)
            ds = ibtracs.get(prefix)
            if ds is None:
                logging.error(f"Dataset not found for basin {basin}")
                return gr.update(choices=[], value=None)
            season_data = ds.get_season(int(year))
            if season_data.summary().empty:
                logging.error("No storms found for given year and basin.")
                return gr.update(choices=[], value=None)
            combined_summary = season_data.summary()
        options = []
        for i in range(len(combined_summary)):
            try:
                name = combined_summary['name'][i] if pd.notnull(combined_summary['name'][i]) else "Unnamed"
                storm_id = combined_summary['id'][i]
                options.append(f"{name} ({storm_id})")
            except Exception:
                continue
        return gr.update(choices=options, value=options[0] if options else None)
    except Exception as e:
        logging.error(f"Error in update_typhoon_options: {e}")
        return gr.update(choices=[], value=None)

def update_typhoon_options_anim(year, basin):
    try:
        data = typhoon_data.copy()
        data['Year'] = data['ISO_TIME'].dt.year
        season_data = data[data['Year'] == int(year)]
        if season_data.empty:
            logging.error(f"No storms found for year {year} in animation update.")
            return gr.update(choices=[], value=None)
        summary = season_data.groupby('SID').first().reset_index()
        options = []
        for idx, row in summary.iterrows():
            name = row['NAME'] if pd.notnull(row['NAME']) else "Unnamed"
            options.append(f"{name} ({row['SID']})")
        return gr.update(choices=options, value=options[0] if options else None)
    except Exception as e:
        logging.error(f"Error in update_typhoon_options_anim: {e}")
        return gr.update(choices=[], value=None)

# -----------------------------
# Gradio Interface
# -----------------------------
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
    gr.Markdown("# Typhoon Analysis Dashboard")
    
    with gr.Tab("Overview"):
        gr.Markdown("""
        ## Welcome to the Typhoon Analysis Dashboard

        This dashboard allows you to analyze typhoon data in relation to ENSO phases.

        ### Features:
        - **Track Visualization**: View typhoon tracks by time period and ENSO phase.
        - **Wind Analysis**: Examine wind speed vs ONI relationships.
        - **Pressure Analysis**: Analyze pressure vs ONI relationships.
        - **Longitude Analysis**: Study typhoon generation longitude vs ONI.
        - **Path Animation**: View animated storm tracks on a free stock world map (centered at 180°) with a dynamic sidebar that shows the typhoon name and basin.
        - **TSNE Cluster**: Perform t-SNE clustering on WP storm routes using raw merged typhoon+ONI data with detailed error management.
          Mean routes and evolving curves (wind and pressure vs. normalized route index) are computed.
        """)

    with gr.Tab("Track Visualization"):
        with gr.Row():
            start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            typhoon_search = gr.Textbox(label="Typhoon Search")
        analyze_btn = gr.Button("Generate Tracks")
        tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
        typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
        analyze_btn.click(fn=get_full_tracks,
                          inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
                          outputs=[tracks_plot, typhoon_count])
    
    with gr.Tab("Wind Analysis"):
        with gr.Row():
            wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            wind_typhoon_search = gr.Textbox(label="Typhoon Search")
        wind_analyze_btn = gr.Button("Generate Wind Analysis")
        wind_scatter = gr.Plot(label="Wind Speed vs ONI")
        wind_regression_results = gr.Textbox(label="Wind Regression Results")
        wind_analyze_btn.click(fn=get_wind_analysis,
                               inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
                               outputs=[wind_scatter, wind_regression_results])
    
    with gr.Tab("Pressure Analysis"):
        with gr.Row():
            pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
        pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
        pressure_scatter = gr.Plot(label="Pressure vs ONI")
        pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
        pressure_analyze_btn.click(fn=get_pressure_analysis,
                                   inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
                                   outputs=[pressure_scatter, pressure_regression_results])
    
    with gr.Tab("Longitude Analysis"):
        with gr.Row():
            lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            lon_end_year = gr.Number(label="End Year", value=2000, minimum=1900, maximum=2024, step=1)
            lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
        lon_analyze_btn = gr.Button("Generate Longitude Analysis")
        regression_plot = gr.Plot(label="Longitude vs ONI")
        slopes_text = gr.Textbox(label="Regression Slopes")
        lon_regression_results = gr.Textbox(label="Longitude Regression Results")
        lon_analyze_btn.click(fn=get_longitude_analysis,
                              inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
                              outputs=[regression_plot, slopes_text, lon_regression_results])
    
    with gr.Tab("Tropical Cyclone Path Animation"):
        with gr.Row():
            year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000")
            # Create a hidden component for basin constant; always "All Basins"
            basin_constant = gr.Textbox(value="All Basins", visible=False)
        with gr.Row():
            typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone")
            standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
        animate_btn = gr.Button("Generate Animation")
        path_video = gr.Video(label="Tropical Cyclone Path Animation", format="mp4", interactive=False, elem_id="path_video")
        animation_info = gr.Markdown("""
        ### Animation Instructions
        1. Select a year (data is from your processed CSV, using all basins).
        2. Choose a tropical cyclone from the populated list.
        3. Select a classification standard (Atlantic or Taiwan).
        4. Click "Generate Animation".
        5. The animation displays the storm track on a free stock world map (centered at 180°) with a dynamic sidebar.
           The sidebar shows the storm name and basin.
        """)
        # Update typhoon dropdown using only year (ignore basin since it's fixed)
        year_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, gr.State("dummy")], outputs=typhoon_dropdown)
        animate_btn.click(fn=simplified_track_video,
                          inputs=[year_dropdown, basin_constant, typhoon_dropdown, standard_dropdown],
                          outputs=path_video)
    
    with gr.Tab("TSNE Cluster"):
        with gr.Row():
            tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
            tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
        tsne_analyze_btn = gr.Button("Analyze")
        tsne_plot = gr.Plot(label="t-SNE Clusters")
        routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes")
        stats_plot = gr.Plot(label="Cluster Statistics")
        cluster_info = gr.Textbox(label="Cluster Information", lines=10)
        tsne_analyze_btn.click(fn=update_route_clusters,
                               inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season],
                               outputs=[tsne_plot, routes_plot, stats_plot, cluster_info])

demo.launch(share=True)