Spaces:
Sleeping
Sleeping
File size: 50,805 Bytes
a60f1c0 6384d58 7fa25f7 efb47b3 4d9b5c3 a74a30d a566db2 84e165d 27f90be 16ed767 a60f1c0 84e165d 7513911 a60f1c0 57cb1ac a60f1c0 87de8af a60f1c0 eb8c873 27f90be 7513911 eb8c873 27f90be efb47b3 87de8af e509f96 87de8af e509f96 bc15b27 efb47b3 a60f1c0 a2d2271 373b768 a2d2271 16ed767 a2d2271 16ed767 efb47b3 a60f1c0 611f47d 84e165d 8e5f90a a60f1c0 eb8c873 a566db2 eb8c873 a60f1c0 a2d2271 a60f1c0 a2d2271 a60f1c0 a2d2271 efb47b3 eb8c873 57cb1ac eb8c873 efb47b3 a2d2271 eb8c873 a566db2 5cfd2b7 76771b5 5cfd2b7 76771b5 5cfd2b7 76771b5 5cfd2b7 76771b5 5cfd2b7 76771b5 5cfd2b7 76771b5 5cfd2b7 76771b5 27f90be 5cfd2b7 76771b5 a566db2 eb8c873 a60f1c0 a2d2271 a60f1c0 eb8c873 a60f1c0 eb8c873 a60f1c0 eb8c873 a60f1c0 eb8c873 a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 eb8c873 efb47b3 87de8af 1ca7717 a60f1c0 1ca7717 a60f1c0 1ca7717 a60f1c0 1ca7717 a60f1c0 1ca7717 87de8af 57cb1ac a60f1c0 bc15b27 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a2d2271 57cb1ac 87de8af 57cb1ac a566db2 a2d2271 87de8af a566db2 57cb1ac a60f1c0 a566db2 a2d2271 a566db2 4d9b5c3 a566db2 a2d2271 a566db2 a60f1c0 a566db2 a60f1c0 a566db2 a60f1c0 a566db2 a2d2271 a566db2 a60f1c0 a566db2 a60f1c0 a566db2 a60f1c0 a566db2 a2d2271 a566db2 a60f1c0 a566db2 a2d2271 a566db2 a2d2271 a60f1c0 a566db2 ce399c7 a566db2 e6b6548 a60f1c0 e6b6548 ce399c7 e6b6548 a60f1c0 57cb1ac 87de8af a60f1c0 e6b6548 87de8af a60f1c0 e6b6548 a60f1c0 e6b6548 87de8af e6b6548 a60f1c0 e6b6548 a60f1c0 e6b6548 87de8af e6b6548 a60f1c0 eb8c873 373b768 eb8c873 373b768 eb8c873 373b768 eb8c873 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 a2d2271 87de8af a60f1c0 87de8af a60f1c0 bc15b27 a60f1c0 87de8af a60f1c0 87de8af a60f1c0 87de8af ce399c7 a60f1c0 87de8af a60f1c0 ce399c7 a60f1c0 ce399c7 a60f1c0 87de8af ce399c7 a60f1c0 ce399c7 a60f1c0 87de8af ce399c7 87de8af ce399c7 87de8af a60f1c0 ce399c7 a60f1c0 ce399c7 a60f1c0 ce399c7 a60f1c0 ce399c7 a60f1c0 87de8af a60f1c0 87de8af bc15b27 ce399c7 bc15b27 87de8af ce399c7 87de8af ce399c7 bc15b27 ce399c7 bc15b27 ce399c7 bc15b27 ce399c7 bc15b27 ce399c7 bc15b27 ce399c7 bc15b27 ce399c7 a60f1c0 87de8af 57cb1ac a60f1c0 4d9b5c3 57cb1ac 87de8af 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 87de8af 57cb1ac a60f1c0 87de8af a60f1c0 57cb1ac a60f1c0 57cb1ac 4d9b5c3 a60f1c0 4d9b5c3 57cb1ac 4d9b5c3 57cb1ac 87de8af a60f1c0 57cb1ac 4d9b5c3 15b9748 e6b6548 57cb1ac e6b6548 87de8af 57cb1ac 84e165d 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac 84e165d 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac 611f47d 87de8af a2d2271 a566db2 912d5b8 a60f1c0 912d5b8 a60f1c0 912d5b8 a60f1c0 87de8af 912d5b8 8ef7489 912d5b8 a2d2271 8ef7489 a2d2271 8ef7489 a566db2 912d5b8 e28f12c a60f1c0 912d5b8 8ef7489 912d5b8 8ef7489 912d5b8 a60f1c0 912d5b8 8ef7489 912d5b8 8ef7489 912d5b8 a60f1c0 912d5b8 8ef7489 a60f1c0 8ef7489 09a0f4d 912d5b8 a60f1c0 a566db2 1f46770 912d5b8 8ef7489 fcd1f06 b7a2a27 8ef7489 bb0d660 fcd1f06 912d5b8 87de8af 57cb1ac 87de8af 912d5b8 8ef7489 87de8af a60f1c0 8ef7489 16ed767 8ef7489 16ed767 8ef7489 16ed767 84e165d 16ed767 a60f1c0 a2d2271 57cb1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 |
import os
import argparse
import logging
import pickle
import threading
import time
from datetime import datetime, timedelta
from collections import defaultdict
import csv
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from scipy.interpolate import interp1d
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr
try:
import cdsapi
CDSAPI_AVAILABLE = True
except ImportError:
CDSAPI_AVAILABLE = False
import tropycal.tracks as tracks
# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path
# Update data paths for Huggingface Spaces
TEMP_DIR = tempfile.gettempdir()
DATA_PATH = os.environ.get('DATA_PATH', TEMP_DIR)
# Ensure directory exists
os.makedirs(DATA_PATH, exist_ok=True)
# Update your file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')
# IBTrACS settings (for typhoon options)
BASIN_FILES = {
'EP': 'ibtracs.EP.list.v04r01.csv',
'NA': 'ibtracs.NA.list.v04r01.csv',
'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1
# -----------------------------
# Color Maps and Standards
# -----------------------------
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'Tropical Storm': 'rgb(0, 0, 255)',
'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
# -----------------------------
# Season and Regions
# -----------------------------
season_months = {
'all': list(range(1, 13)),
'summer': [6, 7, 8],
'winter': [12, 1, 2]
}
regions = {
"Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1},
"Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125},
"Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150},
"China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135},
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
}
# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------
def download_oni_file(url, filename):
response = requests.get(url)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
with open(input_file, 'r') as f:
lines = f.readlines()[1:]
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year)-1)
data[year][month-1] = anom
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
for year in sorted(data.keys()):
writer.writerow([year] + data[year])
def update_oni_data():
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not os.path.exists(output_file):
os.replace(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
def load_data(oni_path, typhoon_path):
# Create default empty DataFrames with minimum structure
oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [],
'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [],
'Oct': [], 'Nov': [], 'Dec': []})
# Try to load ONI data or create it
if not os.path.exists(oni_path):
logging.warning(f"ONI data file not found: {oni_path}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
except Exception as e:
logging.error(f"Error loading ONI data: {e}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
except Exception as e:
logging.error(f"Still can't load ONI data: {e}")
# For typhoon data, focus on getting WP data
if os.path.exists(typhoon_path):
try:
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
# Log WP data count
wp_count = len(typhoon_data[typhoon_data['SID'].str.startswith('WP')])
logging.info(f"Loaded {wp_count} Western Pacific typhoon records")
except Exception as e:
logging.error(f"Error loading typhoon data: {e}")
typhoon_data = pd.DataFrame()
else:
logging.error(f"Typhoon data file not found: {typhoon_path}")
# Download WP typhoon data directly from IBTrACS if available
try:
if LOCAL_IBTRACS_PATH and os.path.exists(LOCAL_IBTRACS_PATH):
logging.info("Loading WP data from local IBTrACS file")
wp_data = pd.read_csv(LOCAL_IBTRACS_PATH, low_memory=False)
typhoon_data = wp_data
logging.info(f"Loaded {len(typhoon_data)} WP records from IBTrACS")
else:
# Try to download WP file if not exists
logging.info("Downloading WP basin file...")
response = requests.get(IBTRACS_BASE_URL + BASIN_FILES['WP'])
if response.status_code == 200:
os.makedirs(os.path.dirname(LOCAL_IBTRACS_PATH), exist_ok=True)
with open(LOCAL_IBTRACS_PATH, 'wb') as f:
f.write(response.content)
wp_data = pd.read_csv(LOCAL_IBTRACS_PATH, low_memory=False)
typhoon_data = wp_data
logging.info(f"Downloaded and loaded {len(typhoon_data)} WP records")
except Exception as e:
logging.error(f"Failed to load or download WP data: {e}")
# Create minimal WP sample data to prevent crashes
typhoon_data = pd.DataFrame({
'SID': ['WP012000', 'WP022000', 'WP032000'],
'ISO_TIME': [pd.Timestamp('2000-01-01'), pd.Timestamp('2000-02-01'), pd.Timestamp('2000-03-01')],
'NAME': ['SAMPLE_WP1', 'SAMPLE_WP2', 'SAMPLE_WP3'],
'SEASON': [2000, 2000, 2000],
'LAT': [20.0, 21.0, 22.0],
'LON': [140.0, 141.0, 142.0],
'USA_WIND': [50.0, 60.0, 70.0],
'USA_PRES': [990.0, 980.0, 970.0]
})
logging.warning("Created minimal Western Pacific sample data to prevent crashes")
return oni_data, typhoon_data
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
'LAT':'first','LON':'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year','Month'])
def categorize_typhoon(wind_speed):
if wind_speed >= 137:
return 'C5 Super Typhoon'
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed >= 96:
return 'C3 Strong Typhoon'
elif wind_speed >= 83:
return 'C2 Typhoon'
elif wind_speed >= 64:
return 'C1 Typhoon'
elif wind_speed >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# -----------------------------
# Regression Functions
# -----------------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
data['western_typhoon'] = (data['LON']<=140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
model = sm.OLS(y, sm.add_constant(X)).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
# -----------------------------
# IBTrACS Data Loading
# -----------------------------
def load_ibtracs_data():
ibtracs_data = {}
for basin, filename in BASIN_FILES.items():
local_path = os.path.join(DATA_PATH, filename)
if not os.path.exists(local_path):
logging.info(f"Downloading {basin} basin file...")
response = requests.get(IBTRACS_BASE_URL+filename)
response.raise_for_status()
with open(local_path, 'wb') as f:
f.write(response.content)
logging.info(f"Downloaded {basin} basin file.")
try:
logging.info(f"--> Starting to read in IBTrACS data for basin {basin}")
ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path)
logging.info(f"--> Completed reading in IBTrACS data for basin {basin}")
ibtracs_data[basin] = ds
except ValueError as e:
logging.warning(f"Skipping basin {basin} due to error: {e}")
ibtracs_data[basin] = None
return ibtracs_data
ibtracs = load_ibtracs_data()
# -----------------------------
# Load & Process Data
# -----------------------------
update_oni_data()
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# -----------------------------
# Visualization Functions
# -----------------------------
def generate_typhoon_tracks(filtered_data, typhoon_search):
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
phase = storm_data['ENSO_Phase'].iloc[0]
color = {'El Nino':'red','La Nina':'blue','Neutral':'green'}.get(phase, 'black')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(
title='Typhoon Tracks',
geo=dict(projection_type='natural earth', showland=True),
height=700
)
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
hover_data=['NAME','Year','Category'],
title='Wind Speed vs ONI',
labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
hover_data=['NAME','Year','Category'],
title='Pressure vs ONI',
labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
return fig
def generate_regression_analysis(filtered_data):
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1,1)
y = filtered_data['ONI']
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID']==sid]
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
basin = storm_data['SID'].iloc[0][:2] # First 2 characters often denote basin
storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({basin})",
line=dict(width=1.5, color=color), hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID']==sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
line=dict(width=3, color='yellow'),
marker=dict(size=5), hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243,243,243)',
countrycolor='rgb(204,204,204)',
coastlinecolor='rgb(204,204,204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El Niño, Blue: La Nina, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return results[1], regression
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return results[2], regression
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return results[3], results[4], regression
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
if standard=='taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']
# -----------------------------
# Updated TSNE Cluster Function with Mean Curves
# -----------------------------
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
try:
# Merge raw typhoon data with ONI so each storm has multiple observations.
raw_data = typhoon_data.copy()
raw_data['Year'] = raw_data['ISO_TIME'].dt.year
raw_data['Month'] = raw_data['ISO_TIME'].dt.strftime('%m')
merged_raw = pd.merge(raw_data, process_oni_data(oni_data), on=['Year','Month'], how='left')
# Filter by date
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
merged_raw = merged_raw[(merged_raw['ISO_TIME'] >= start_date) & (merged_raw['ISO_TIME'] <= end_date)]
logging.info(f"Total points after date filtering: {merged_raw.shape[0]}")
# Filter by ENSO phase if specified
merged_raw['ENSO_Phase'] = merged_raw['ONI'].apply(classify_enso_phases)
if enso_value != 'all':
merged_raw = merged_raw[merged_raw['ENSO_Phase'] == enso_value.capitalize()]
logging.info(f"Total points after ENSO filtering: {merged_raw.shape[0]}")
# Regional filtering for Western Pacific
wp_data = merged_raw[(merged_raw['LON'] >= 100) & (merged_raw['LON'] <= 180) &
(merged_raw['LAT'] >= 0) & (merged_raw['LAT'] <= 40)]
logging.info(f"Total points after WP regional filtering: {wp_data.shape[0]}")
if wp_data.empty:
logging.info("WP regional filter returned no data; using all filtered data.")
wp_data = merged_raw
# Group by storm ID so each storm has multiple observations
all_storms_data = []
for sid, group in wp_data.groupby('SID'):
group = group.sort_values('ISO_TIME')
times = pd.to_datetime(group['ISO_TIME']).values
lats = group['LAT'].astype(float).values
lons = group['LON'].astype(float).values
if len(lons) < 2:
continue
# Also extract wind and pressure curves
wind = group['USA_WIND'].astype(float).values if 'USA_WIND' in group.columns else None
pres = group['USA_PRES'].astype(float).values if 'USA_PRES' in group.columns else None
all_storms_data.append((sid, lons, lats, times, wind, pres))
logging.info(f"Storms available for TSNE after grouping: {len(all_storms_data)}")
if not all_storms_data:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms for clustering."
# Interpolate each storm's route, wind, and pressure to a common length
max_length = max(len(item[1]) for item in all_storms_data)
route_vectors = []
wind_curves = []
pres_curves = []
storm_ids = []
for sid, lons, lats, times, wind, pres in all_storms_data:
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
try:
lon_interp = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
lat_interp = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Interpolation error for storm {sid}: {ex}")
continue
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
if np.isnan(route_vector).any():
continue
route_vectors.append(route_vector)
storm_ids.append(sid)
# Interpolate wind and pressure if available
if wind is not None and len(wind) >= 2:
try:
wind_interp = interp1d(t, wind, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Wind interpolation error for storm {sid}: {ex}")
wind_interp = np.full(max_length, np.nan)
else:
wind_interp = np.full(max_length, np.nan)
if pres is not None and len(pres) >= 2:
try:
pres_interp = interp1d(t, pres, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Pressure interpolation error for storm {sid}: {ex}")
pres_interp = np.full(max_length, np.nan)
else:
pres_interp = np.full(max_length, np.nan)
wind_curves.append(wind_interp)
pres_curves.append(pres_interp)
logging.info(f"Storms with valid route vectors: {len(route_vectors)}")
if len(route_vectors) == 0:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation."
route_vectors = np.array(route_vectors)
wind_curves = np.array(wind_curves)
pres_curves = np.array(pres_curves)
# Run TSNE on route vectors
tsne = TSNE(n_components=2, random_state=42, verbose=1)
tsne_results = tsne.fit_transform(route_vectors)
# Dynamic DBSCAN: choose eps to yield roughly 5 to 20 clusters
selected_labels = None
selected_eps = None
for eps in np.linspace(1.0, 10.0, 91):
dbscan = DBSCAN(eps=eps, min_samples=3)
labels = dbscan.fit_predict(tsne_results)
clusters = set(labels) - {-1}
if 5 <= len(clusters) <= 20:
selected_labels = labels
selected_eps = eps
break
if selected_labels is None:
selected_eps = 5.0
dbscan = DBSCAN(eps=selected_eps, min_samples=3)
selected_labels = dbscan.fit_predict(tsne_results)
logging.info(f"Selected DBSCAN eps: {selected_eps:.2f} yielding {len(set(selected_labels)-{-1})} clusters.")
# TSNE scatter plot
fig_tsne = go.Figure()
colors = px.colors.qualitative.Safe
unique_labels = sorted(set(selected_labels) - {-1})
for i, label in enumerate(unique_labels):
indices = np.where(selected_labels == label)[0]
fig_tsne.add_trace(go.Scatter(
x=tsne_results[indices, 0],
y=tsne_results[indices, 1],
mode='markers',
marker=dict(color=colors[i % len(colors)]),
name=f"Cluster {label}"
))
noise_indices = np.where(selected_labels == -1)[0]
if len(noise_indices) > 0:
fig_tsne.add_trace(go.Scatter(
x=tsne_results[noise_indices, 0],
y=tsne_results[noise_indices, 1],
mode='markers',
marker=dict(color='grey'),
name='Noise'
))
fig_tsne.update_layout(
title="t-SNE of Storm Routes",
xaxis_title="t-SNE Dim 1",
yaxis_title="t-SNE Dim 2"
)
# For each cluster, compute mean route, and compute mean wind and pressure curves along normalized route index.
fig_routes = go.Figure()
cluster_stats = [] # To hold mean curves per cluster
for i, label in enumerate(unique_labels):
indices = np.where(selected_labels == label)[0]
cluster_ids = [storm_ids[j] for j in indices]
cluster_vectors = route_vectors[indices, :]
mean_vector = np.mean(cluster_vectors, axis=0)
mean_route = mean_vector.reshape((max_length, 2))
mean_lon = mean_route[:, 0]
mean_lat = mean_route[:, 1]
fig_routes.add_trace(go.Scattergeo(
lon=mean_lon,
lat=mean_lat,
mode='lines',
line=dict(width=4, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean Route"
))
# Retrieve raw wind and pressure curves for storms in this cluster
cluster_winds = wind_curves[indices, :]
cluster_pres = pres_curves[indices, :]
mean_wind_curve = np.nanmean(cluster_winds, axis=0)
mean_pres_curve = np.nanmean(cluster_pres, axis=0)
cluster_stats.append((label, mean_wind_curve, mean_pres_curve))
# Create a cluster stats plot with curves vs normalized route index (0 to 1)
x_axis = np.linspace(0, 1, max_length)
fig_stats = make_subplots(rows=2, cols=1, shared_xaxes=True,
subplot_titles=("Mean Wind Speed (knots)", "Mean MSLP (hPa)"))
for i, (label, wind_curve, pres_curve) in enumerate(cluster_stats):
fig_stats.add_trace(go.Scatter(
x=x_axis,
y=wind_curve,
mode='lines',
line=dict(width=2, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean Wind"
), row=1, col=1)
fig_stats.add_trace(go.Scatter(
x=x_axis,
y=pres_curve,
mode='lines',
line=dict(width=2, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean MSLP"
), row=2, col=1)
fig_stats.update_layout(
title="Cluster Mean Curves",
xaxis_title="Normalized Route Index",
yaxis_title="Mean Wind Speed (knots)",
xaxis2_title="Normalized Route Index",
yaxis2_title="Mean MSLP (hPa)",
showlegend=True
)
info = f"TSNE clustering complete. Selected eps: {selected_eps:.2f}. Clusters: {len(unique_labels)}."
return fig_tsne, fig_routes, fig_stats, info
except Exception as e:
logging.error(f"Error in TSNE clustering: {e}")
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), f"Error in TSNE clustering: {e}"
# -----------------------------
# Animation Functions Using Processed CSV & Stock Map
# -----------------------------
def generate_track_video_from_csv(year, storm_id, standard):
storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy()
if storm_df.empty:
logging.error(f"No data found for storm: {storm_id}")
return None
storm_df = storm_df.sort_values('ISO_TIME')
lats = storm_df['LAT'].astype(float).values
lons = storm_df['LON'].astype(float).values
times = pd.to_datetime(storm_df['ISO_TIME']).values
if 'USA_WIND' in storm_df.columns:
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values
else:
winds = np.full(len(lats), np.nan)
storm_name = storm_df['NAME'].iloc[0]
basin = storm_df['SID'].iloc[0][:2] # Use first 2 characters as basin code
season = storm_df['SEASON'].iloc[0]
min_lat, max_lat = np.min(lats), np.max(lats)
min_lon, max_lon = np.min(lons), np.max(lons)
lat_padding = max((max_lat - min_lat)*0.3, 5)
lon_padding = max((max_lon - min_lon)*0.3, 5)
fig = plt.figure(figsize=(12,6), dpi=100)
ax = plt.axes([0.05, 0.05, 0.60, 0.85],
projection=ccrs.PlateCarree(central_longitude=180))
ax.stock_img()
ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding],
crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
gl = ax.gridlines(draw_labels=True, color='gray', alpha=0.4, linestyle='--')
gl.top_labels = gl.right_labels = False
ax.set_title(f"{year} {storm_name} ({basin}) - {season}", fontsize=14)
line, = ax.plot([], [], transform=ccrs.PlateCarree(), color='blue', linewidth=2)
point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree())
date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
# Display storm name and basin in a dynamic sidebar
storm_info_text = fig.text(0.70, 0.60, '', fontsize=10,
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))
from matplotlib.lines import Line2D
standard_dict = atlantic_standard if standard=='atlantic' else taiwan_standard
legend_elements = [Line2D([0],[0], marker='o', color='w', label=cat,
markerfacecolor=details['hex'], markersize=8)
for cat, details in standard_dict.items()]
ax.legend(handles=legend_elements, title="Storm Categories",
loc='upper right', fontsize=9)
def init():
line.set_data([], [])
point.set_data([], [])
date_text.set_text('')
storm_info_text.set_text('')
return line, point, date_text, storm_info_text
def update(frame):
line.set_data(lons[:frame+1], lats[:frame+1])
point.set_data([lons[frame]], [lats[frame]])
wind_speed = winds[frame] if frame < len(winds) else np.nan
category, color = categorize_typhoon_by_standard(wind_speed, standard)
point.set_color(color)
dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M')
date_text.set_text(dt_str)
info_str = (f"Name: {storm_name}\nBasin: {basin}\nDate: {dt_str}\nWind: {wind_speed:.1f} kt\nCategory: {category}")
storm_info_text.set_text(info_str)
return line, point, date_text, storm_info_text
ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times),
interval=200, blit=True, repeat=True)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
writer = animation.FFMpegWriter(fps=5, bitrate=1800)
ani.save(temp_file.name, writer=writer)
plt.close(fig)
return temp_file.name
def simplified_track_video(year, basin, typhoon, standard):
if not typhoon:
return None
storm_id = typhoon.split('(')[-1].strip(')')
return generate_track_video_from_csv(year, storm_id, standard)
# -----------------------------
# Typhoon Options Update Functions
# -----------------------------
basin_to_prefix = {
"All Basins": "all",
"NA - North Atlantic": "NA",
"EP - Eastern North Pacific": "EP",
"WP - Western North Pacific": "WP"
}
def update_typhoon_options(year, basin):
try:
if basin == "All Basins":
summaries = []
for data in ibtracs.values():
if data is not None:
season_data = data.get_season(int(year))
if season_data.summary().empty:
continue
summaries.append(season_data.summary())
if len(summaries) == 0:
logging.error("No storms found for given year and basin.")
return gr.update(choices=[], value=None)
combined_summary = pd.concat(summaries, ignore_index=True)
else:
prefix = basin_to_prefix.get(basin)
ds = ibtracs.get(prefix)
if ds is None:
logging.error(f"Dataset not found for basin {basin}")
return gr.update(choices=[], value=None)
season_data = ds.get_season(int(year))
if season_data.summary().empty:
logging.error("No storms found for given year and basin.")
return gr.update(choices=[], value=None)
combined_summary = season_data.summary()
options = []
for i in range(len(combined_summary)):
try:
name = combined_summary['name'][i] if pd.notnull(combined_summary['name'][i]) else "Unnamed"
storm_id = combined_summary['id'][i]
options.append(f"{name} ({storm_id})")
except Exception:
continue
return gr.update(choices=options, value=options[0] if options else None)
except Exception as e:
logging.error(f"Error in update_typhoon_options: {e}")
return gr.update(choices=[], value=None)
def update_typhoon_options_anim(year, basin):
try:
data = typhoon_data.copy()
data['Year'] = data['ISO_TIME'].dt.year
season_data = data[data['Year'] == int(year)]
if season_data.empty:
logging.error(f"No storms found for year {year} in animation update.")
return gr.update(choices=[], value=None)
summary = season_data.groupby('SID').first().reset_index()
options = []
for idx, row in summary.iterrows():
name = row['NAME'] if pd.notnull(row['NAME']) else "Unnamed"
options.append(f"{name} ({row['SID']})")
return gr.update(choices=options, value=options[0] if options else None)
except Exception as e:
logging.error(f"Error in update_typhoon_options_anim: {e}")
return gr.update(choices=[], value=None)
# -----------------------------
# Gradio Interface
# -----------------------------
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Overview"):
gr.Markdown("""
## Welcome to the Typhoon Analysis Dashboard
This dashboard allows you to analyze typhoon data in relation to ENSO phases.
### Features:
- **Track Visualization**: View typhoon tracks by time period and ENSO phase.
- **Wind Analysis**: Examine wind speed vs ONI relationships.
- **Pressure Analysis**: Analyze pressure vs ONI relationships.
- **Longitude Analysis**: Study typhoon generation longitude vs ONI.
- **Path Animation**: View animated storm tracks on a free stock world map (centered at 180°) with a dynamic sidebar that shows the typhoon name and basin.
- **TSNE Cluster**: Perform t-SNE clustering on WP storm routes using raw merged typhoon+ONI data with detailed error management.
Mean routes and evolving curves (wind and pressure vs. normalized route index) are computed.
""")
with gr.Tab("Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
analyze_btn.click(fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count])
with gr.Tab("Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
wind_regression_results = gr.Textbox(label="Wind Regression Results")
wind_analyze_btn.click(fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results])
with gr.Tab("Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
pressure_analyze_btn.click(fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results])
with gr.Tab("Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot(label="Longitude vs ONI")
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
lon_analyze_btn.click(fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results])
with gr.Tab("Tropical Cyclone Path Animation"):
with gr.Row():
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000")
# Create a hidden component for basin constant; always "All Basins"
basin_constant = gr.Textbox(value="All Basins", visible=False)
with gr.Row():
typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone")
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
animate_btn = gr.Button("Generate Animation")
path_video = gr.Video(label="Tropical Cyclone Path Animation", format="mp4", interactive=False, elem_id="path_video")
animation_info = gr.Markdown("""
### Animation Instructions
1. Select a year (data is from your processed CSV, using all basins).
2. Choose a tropical cyclone from the populated list.
3. Select a classification standard (Atlantic or Taiwan).
4. Click "Generate Animation".
5. The animation displays the storm track on a free stock world map (centered at 180°) with a dynamic sidebar.
The sidebar shows the storm name and basin.
""")
# Update typhoon dropdown using only year (ignore basin since it's fixed)
year_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, gr.State("dummy")], outputs=typhoon_dropdown)
animate_btn.click(fn=simplified_track_video,
inputs=[year_dropdown, basin_constant, typhoon_dropdown, standard_dropdown],
outputs=path_video)
with gr.Tab("TSNE Cluster"):
with gr.Row():
tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
tsne_analyze_btn = gr.Button("Analyze")
tsne_plot = gr.Plot(label="t-SNE Clusters")
routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes")
stats_plot = gr.Plot(label="Cluster Statistics")
cluster_info = gr.Textbox(label="Cluster Information", lines=10)
tsne_analyze_btn.click(fn=update_route_clusters,
inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season],
outputs=[tsne_plot, routes_plot, stats_plot, cluster_info])
demo.launch(share=True)
|