Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
4 |
-
from plotly.subplots import make_subplots
|
5 |
import pickle
|
6 |
import tropycal.tracks as tracks
|
7 |
import pandas as pd
|
@@ -10,15 +9,19 @@ import cachetools
|
|
10 |
import functools
|
11 |
import hashlib
|
12 |
import os
|
|
|
13 |
from datetime import datetime, timedelta
|
14 |
-
from datetime import date
|
15 |
from scipy import stats
|
16 |
from scipy.optimize import minimize, curve_fit
|
17 |
from sklearn.linear_model import LinearRegression
|
18 |
from sklearn.cluster import KMeans
|
19 |
from scipy.interpolate import interp1d
|
20 |
from fractions import Fraction
|
|
|
|
|
21 |
import statsmodels.api as sm
|
|
|
22 |
import time
|
23 |
import threading
|
24 |
import requests
|
@@ -28,618 +31,707 @@ import csv
|
|
28 |
from collections import defaultdict
|
29 |
import shutil
|
30 |
import filecmp
|
31 |
-
import warnings
|
32 |
-
warnings.filterwarnings('ignore')
|
33 |
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
37 |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
38 |
-
LOCAL_iBtrace_PATH =
|
39 |
-
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/
|
|
|
40 |
CACHE_FILE = 'ibtracs_cache.pkl'
|
41 |
CACHE_EXPIRY_DAYS = 1
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
"""Ensure all required data files exist before loading"""
|
62 |
-
print("Checking and downloading required data files...")
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
71 |
-
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
72 |
-
try:
|
73 |
-
response = requests.get(url)
|
74 |
-
response.raise_for_status()
|
75 |
-
with open(temp_file, 'wb') as f:
|
76 |
-
f.write(response.content)
|
77 |
-
self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH)
|
78 |
-
print("ONI data downloaded and converted successfully")
|
79 |
-
except Exception as e:
|
80 |
-
print(f"Error downloading ONI data: {e}")
|
81 |
-
raise
|
82 |
-
finally:
|
83 |
-
if os.path.exists(temp_file):
|
84 |
-
os.remove(temp_file)
|
85 |
-
|
86 |
-
# Download IBTrACS data if it doesn't exist
|
87 |
-
if not os.path.exists(LOCAL_iBtrace_PATH):
|
88 |
-
print("Downloading IBTrACS data...")
|
89 |
-
try:
|
90 |
-
response = requests.get(iBtrace_uri)
|
91 |
-
response.raise_for_status()
|
92 |
-
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
93 |
-
f.write(response.text)
|
94 |
-
print("IBTrACS data downloaded successfully")
|
95 |
-
except Exception as e:
|
96 |
-
print(f"Error downloading IBTrACS data: {e}")
|
97 |
-
raise
|
98 |
-
|
99 |
-
# Create processed typhoon data if it doesn't exist
|
100 |
-
if not os.path.exists(TYPHOON_DATA_PATH):
|
101 |
-
print("Processing typhoon data...")
|
102 |
-
try:
|
103 |
-
self.convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
|
104 |
-
print("Typhoon data processed successfully")
|
105 |
-
except Exception as e:
|
106 |
-
print(f"Error processing typhoon data: {e}")
|
107 |
-
raise
|
108 |
-
|
109 |
-
print("All required data files are ready")
|
110 |
-
|
111 |
-
def load_initial_data(self):
|
112 |
-
"""Initialize all required data"""
|
113 |
-
print("Loading initial data...")
|
114 |
-
self.update_oni_data()
|
115 |
-
self.oni_df = self.fetch_oni_data_from_csv()
|
116 |
-
self.ibtracs = self.load_ibtracs_data()
|
117 |
-
self.update_typhoon_data()
|
118 |
-
self.oni_data, self.typhoon_data = self.load_data()
|
119 |
-
self.oni_long = self.process_oni_data(self.oni_data)
|
120 |
-
self.typhoon_max = self.process_typhoon_data(self.typhoon_data)
|
121 |
-
self.merged_data = self.merge_data()
|
122 |
-
print("Initial data loading complete")
|
123 |
-
|
124 |
-
def convert_typhoondata(self, input_file, output_file):
|
125 |
-
"""Convert IBTrACS data to processed format"""
|
126 |
-
print(f"Converting typhoon data from {input_file} to {output_file}")
|
127 |
-
with open(input_file, 'r') as infile:
|
128 |
-
# Skip the header lines
|
129 |
-
next(infile)
|
130 |
-
next(infile)
|
131 |
-
|
132 |
-
reader = csv.reader(infile)
|
133 |
-
sid_data = defaultdict(list)
|
134 |
-
|
135 |
-
for row in reader:
|
136 |
-
if not row: # Skip blank lines
|
137 |
-
continue
|
138 |
-
|
139 |
-
sid = row[0]
|
140 |
-
iso_time = row[6]
|
141 |
-
sid_data[sid].append((row, iso_time))
|
142 |
-
|
143 |
-
with open(output_file, 'w', newline='') as outfile:
|
144 |
-
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME',
|
145 |
-
'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES',
|
146 |
-
'START_DATE', 'END_DATE']
|
147 |
-
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
148 |
-
writer.writeheader()
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
for row, iso_time in data:
|
155 |
-
writer.writerow({
|
156 |
-
'SID': row[0],
|
157 |
-
'ISO_TIME': iso_time,
|
158 |
-
'LAT': row[8],
|
159 |
-
'LON': row[9],
|
160 |
-
'SEASON': row[1],
|
161 |
-
'NAME': row[5],
|
162 |
-
'WMO_WIND': row[10].strip() or ' ',
|
163 |
-
'WMO_PRES': row[11].strip() or ' ',
|
164 |
-
'USA_WIND': row[23].strip() or ' ',
|
165 |
-
'USA_PRES': row[24].strip() or ' ',
|
166 |
-
'START_DATE': start_date,
|
167 |
-
'END_DATE': end_date
|
168 |
-
})
|
169 |
-
|
170 |
-
def fetch_oni_data_from_csv(self):
|
171 |
-
"""Load ONI data from CSV"""
|
172 |
-
df = pd.read_csv(ONI_DATA_PATH)
|
173 |
-
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
174 |
-
|
175 |
-
# Convert month numbers to month names
|
176 |
-
month_map = {
|
177 |
-
'01': 'Jan', '02': 'Feb', '03': 'Mar', '04': 'Apr',
|
178 |
-
'05': 'May', '06': 'Jun', '07': 'Jul', '08': 'Aug',
|
179 |
-
'09': 'Sep', '10': 'Oct', '11': 'Nov', '12': 'Dec'
|
180 |
-
}
|
181 |
-
df['Month'] = df['Month'].map(month_map)
|
182 |
-
|
183 |
-
# Now create the date
|
184 |
-
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
185 |
-
return df.set_index('Date')
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
return
|
191 |
|
192 |
-
|
193 |
-
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
194 |
-
try:
|
195 |
-
response = requests.get(url)
|
196 |
-
response.raise_for_status()
|
197 |
-
temp_file.write(response.content)
|
198 |
-
self.convert_oni_ascii_to_csv(temp_file.name, ONI_DATA_PATH)
|
199 |
-
self.last_oni_update = date.today()
|
200 |
-
except Exception as e:
|
201 |
-
print(f"Error updating ONI data: {e}")
|
202 |
-
finally:
|
203 |
-
if os.path.exists(temp_file.name):
|
204 |
-
os.remove(temp_file.name)
|
205 |
-
|
206 |
-
def _should_update_oni(self):
|
207 |
-
"""Check if ONI data should be updated"""
|
208 |
-
today = datetime.now()
|
209 |
-
return (today.day in [1, 15] or
|
210 |
-
today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day)
|
211 |
-
|
212 |
-
def convert_oni_ascii_to_csv(self, input_file, output_file):
|
213 |
-
"""Convert ONI ASCII data to CSV format"""
|
214 |
-
data = defaultdict(lambda: [''] * 12)
|
215 |
-
season_to_month = {
|
216 |
-
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
217 |
-
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
218 |
-
}
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
with open(input_file, 'r') as f:
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
parts = line.split()
|
224 |
if len(parts) >= 4:
|
225 |
-
season, year
|
|
|
|
|
226 |
if season in season_to_month:
|
227 |
month = season_to_month[season]
|
|
|
228 |
if season == 'DJF':
|
229 |
year = str(int(year) - 1)
|
|
|
230 |
data[year][month-1] = anom
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
|
|
|
|
232 |
with open(output_file, 'w', newline='') as f:
|
233 |
writer = csv.writer(f)
|
234 |
-
writer.writerow(['Year'
|
|
|
235 |
for year in sorted(data.keys()):
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
"""Load IBTrACS data with caching"""
|
240 |
-
if os.path.exists(CACHE_FILE):
|
241 |
-
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
242 |
-
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
243 |
-
with open(CACHE_FILE, 'rb') as f:
|
244 |
-
return pickle.load(f)
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
response = requests.get(iBtrace_uri)
|
251 |
response.raise_for_status()
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
if
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
print(f"Error updating typhoon data: {e}")
|
278 |
-
|
279 |
-
def load_data(self):
|
280 |
-
"""Load ONI and typhoon data"""
|
281 |
-
oni_data = pd.read_csv(ONI_DATA_PATH)
|
282 |
-
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
|
283 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
284 |
-
return oni_data, typhoon_data
|
285 |
-
|
286 |
-
def process_oni_data(self, oni_data):
|
287 |
-
"""Process ONI data"""
|
288 |
-
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
289 |
|
290 |
-
#
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
296 |
|
297 |
-
#
|
298 |
-
|
|
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
def process_typhoon_data(self, typhoon_data):
|
303 |
-
"""Process typhoon data"""
|
304 |
-
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
305 |
-
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
306 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
307 |
-
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
|
308 |
-
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
|
309 |
|
310 |
-
|
311 |
-
'USA_WIND': 'max',
|
312 |
-
'WMO_PRES': 'min',
|
313 |
-
'NAME': 'first',
|
314 |
-
'LAT': 'first',
|
315 |
-
'LON': 'first',
|
316 |
-
'ISO_TIME': 'first'
|
317 |
-
}).reset_index()
|
318 |
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
if wind_speed >= 137:
|
331 |
-
return 'C5 Super Typhoon'
|
332 |
elif wind_speed >= 113:
|
333 |
-
return 'C4 Very Strong Typhoon'
|
334 |
elif wind_speed >= 96:
|
335 |
-
return 'C3 Strong Typhoon'
|
336 |
elif wind_speed >= 83:
|
337 |
-
return 'C2 Typhoon'
|
338 |
elif wind_speed >= 64:
|
339 |
-
return 'C1 Typhoon'
|
340 |
elif wind_speed >= 34:
|
341 |
-
return 'Tropical Storm'
|
342 |
else:
|
343 |
-
return 'Tropical Depression'
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
]
|
361 |
|
362 |
-
return
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
'stats': self.generate_statistics(filtered_data)
|
367 |
-
}
|
368 |
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
371 |
fig = go.Figure()
|
372 |
-
|
373 |
-
fig.update_layout(
|
374 |
-
title={
|
375 |
-
'text': 'Typhoon Tracks',
|
376 |
-
'y':0.95,
|
377 |
-
'x':0.5,
|
378 |
-
'xanchor': 'center',
|
379 |
-
'yanchor': 'top'
|
380 |
-
},
|
381 |
-
showlegend=True,
|
382 |
-
legend=dict(
|
383 |
-
yanchor="top",
|
384 |
-
y=0.99,
|
385 |
-
xanchor="left",
|
386 |
-
x=0.01,
|
387 |
-
bgcolor='rgba(255, 255, 255, 0.8)'
|
388 |
-
),
|
389 |
-
geo=dict(
|
390 |
-
projection_type='mercator',
|
391 |
-
showland=True,
|
392 |
-
showcoastlines=True,
|
393 |
-
landcolor='rgb(243, 243, 243)',
|
394 |
-
countrycolor='rgb(204, 204, 204)',
|
395 |
-
coastlinecolor='rgb(214, 214, 214)',
|
396 |
-
showocean=True,
|
397 |
-
oceancolor='rgb(230, 250, 255)',
|
398 |
-
showlakes=True,
|
399 |
-
lakecolor='rgb(230, 250, 255)',
|
400 |
-
lataxis=dict(range=[0, 50]),
|
401 |
-
lonaxis=dict(range=[100, 180]),
|
402 |
-
center=dict(lat=20, lon=140),
|
403 |
-
bgcolor='rgba(255, 255, 255, 0.5)'
|
404 |
-
),
|
405 |
-
paper_bgcolor='rgba(255, 255, 255, 0.5)',
|
406 |
-
plot_bgcolor='rgba(255, 255, 255, 0.5)'
|
407 |
-
)
|
408 |
-
|
409 |
-
for category in COLOR_MAP.keys():
|
410 |
-
category_data = data[data['Category'] == category]
|
411 |
-
for _, storm in category_data.groupby('SID'):
|
412 |
-
track_data = self.typhoon_data[self.typhoon_data['SID'] == storm['SID'].iloc[0]]
|
413 |
-
track_data = track_data.sort_values('ISO_TIME')
|
414 |
-
|
415 |
-
fig.add_trace(go.Scattergeo(
|
416 |
-
lon=track_data['LON'],
|
417 |
-
lat=track_data['LAT'],
|
418 |
-
mode='lines',
|
419 |
-
line=dict(
|
420 |
-
width=2,
|
421 |
-
color=COLOR_MAP[category]
|
422 |
-
),
|
423 |
-
name=category,
|
424 |
-
legendgroup=category,
|
425 |
-
showlegend=True if storm.iloc[0]['SID'] == category_data.iloc[0]['SID'] else False,
|
426 |
-
hovertemplate=(
|
427 |
-
f"Name: {storm['NAME'].iloc[0]}<br>" +
|
428 |
-
f"Category: {category}<br>" +
|
429 |
-
f"Wind Speed: {storm['USA_WIND'].iloc[0]:.1f} kt<br>" +
|
430 |
-
f"Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa<br>" +
|
431 |
-
f"Date: {track_data['ISO_TIME'].dt.strftime('%Y-%m-%d %H:%M').iloc[0]}<br>" +
|
432 |
-
f"Lat: {track_data['LAT'].iloc[0]:.2f}°N<br>" +
|
433 |
-
f"Lon: {track_data['LON'].iloc[0]:.2f}°E<br>" +
|
434 |
-
"<extra></extra>"
|
435 |
-
)
|
436 |
-
))
|
437 |
|
438 |
-
return fig
|
439 |
-
|
440 |
-
def create_wind_analysis(self, data):
|
441 |
-
"""Create wind speed analysis plot"""
|
442 |
-
fig = px.scatter(data,
|
443 |
-
x='ONI',
|
444 |
-
y='USA_WIND',
|
445 |
-
color='Category',
|
446 |
-
color_discrete_map=COLOR_MAP,
|
447 |
-
title='Wind Speed vs ONI Index',
|
448 |
-
labels={
|
449 |
-
'ONI': 'Oceanic Niño Index',
|
450 |
-
'USA_WIND': 'Maximum Wind Speed (kt)'
|
451 |
-
},
|
452 |
-
hover_data=['NAME', 'ISO_TIME', 'Category']
|
453 |
-
)
|
454 |
-
|
455 |
-
# Add regression line
|
456 |
-
x = data['ONI']
|
457 |
-
y = data['USA_WIND']
|
458 |
-
slope, intercept = np.polyfit(x, y, 1)
|
459 |
fig.add_trace(
|
460 |
-
go.
|
461 |
-
|
462 |
-
|
463 |
mode='lines',
|
464 |
-
|
465 |
-
|
|
|
466 |
)
|
467 |
)
|
468 |
-
|
469 |
-
return fig
|
470 |
|
471 |
-
def create_pressure_analysis(self, data):
|
472 |
-
"""Create pressure analysis plot"""
|
473 |
-
fig = px.scatter(data,
|
474 |
-
x='ONI',
|
475 |
-
y='WMO_PRES',
|
476 |
-
color='Category',
|
477 |
-
color_discrete_map=COLOR_MAP,
|
478 |
-
title='Pressure vs ONI Index',
|
479 |
-
labels={
|
480 |
-
'ONI': 'Oceanic Niño Index',
|
481 |
-
'WMO_PRES': 'Minimum Pressure (hPa)'
|
482 |
-
},
|
483 |
-
hover_data=['NAME', 'ISO_TIME', 'Category']
|
484 |
-
)
|
485 |
-
|
486 |
-
# Add regression line
|
487 |
-
x = data['ONI']
|
488 |
-
y = data['WMO_PRES']
|
489 |
-
slope, intercept = np.polyfit(x, y, 1)
|
490 |
fig.add_trace(
|
491 |
-
go.
|
492 |
-
|
493 |
-
|
494 |
-
mode='
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
return fig
|
501 |
-
|
502 |
-
def generate_statistics(self, data):
|
503 |
-
"""Generate statistical summary"""
|
504 |
-
stats = {
|
505 |
-
'total_typhoons': len(data['SID'].unique()),
|
506 |
-
'avg_wind': data['USA_WIND'].mean(),
|
507 |
-
'max_wind': data['USA_WIND'].max(),
|
508 |
-
'avg_pressure': data['WMO_PRES'].mean(),
|
509 |
-
'min_pressure': data['WMO_PRES'].min(),
|
510 |
-
'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']),
|
511 |
-
'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']),
|
512 |
-
'category_counts': data['Category'].value_counts().to_dict()
|
513 |
-
}
|
514 |
-
|
515 |
-
return f"""
|
516 |
-
### Statistical Summary
|
517 |
-
|
518 |
-
- Total Typhoons: {stats['total_typhoons']}
|
519 |
-
- Average Wind Speed: {stats['avg_wind']:.2f} kt
|
520 |
-
- Maximum Wind Speed: {stats['max_wind']:.2f} kt
|
521 |
-
- Average Pressure: {stats['avg_pressure']:.2f} hPa
|
522 |
-
- Minimum Pressure: {stats['min_pressure']:.2f} hPa
|
523 |
-
- ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f}
|
524 |
-
- ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f}
|
525 |
-
|
526 |
-
### Category Distribution
|
527 |
-
{chr(10).join(f'- {cat}: {count}' for cat, count in stats['category_counts'].items())}
|
528 |
-
"""
|
529 |
-
|
530 |
-
def analyze_clusters(self, year, n_clusters):
|
531 |
-
"""Analyze typhoon clusters for a specific year"""
|
532 |
-
year_data = self.typhoon_data[self.typhoon_data['SEASON'] == year]
|
533 |
-
if year_data.empty:
|
534 |
-
return go.Figure(), "No data available for selected year"
|
535 |
-
|
536 |
-
# Prepare data for clustering
|
537 |
-
routes = []
|
538 |
-
for _, storm in year_data.groupby('SID'):
|
539 |
-
if len(storm) > 1:
|
540 |
-
# Standardize route length
|
541 |
-
t = np.linspace(0, 1, len(storm))
|
542 |
-
t_new = np.linspace(0, 1, 100)
|
543 |
-
lon_interp = interp1d(t, storm['LON'], kind='linear')(t_new)
|
544 |
-
lat_interp = interp1d(t, storm['LAT'], kind='linear')(t_new)
|
545 |
-
routes.append(np.column_stack((lon_interp, lat_interp)))
|
546 |
-
|
547 |
-
if len(routes) < n_clusters:
|
548 |
-
return go.Figure(), f"Not enough typhoons ({len(routes)}) for {n_clusters} clusters"
|
549 |
-
|
550 |
-
# Perform clustering
|
551 |
-
routes_array = np.array(routes)
|
552 |
-
routes_reshaped = routes_array.reshape(routes_array.shape[0], -1)
|
553 |
-
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
|
554 |
-
clusters = kmeans.fit_predict(routes_reshaped)
|
555 |
-
|
556 |
-
# Create visualization
|
557 |
-
fig = go.Figure()
|
558 |
-
|
559 |
-
# Set layout
|
560 |
-
fig.update_layout(
|
561 |
-
title=f'Typhoon Route Clusters ({year})',
|
562 |
-
showlegend=True,
|
563 |
-
geo=dict(
|
564 |
-
projection_type='mercator',
|
565 |
-
showland=True,
|
566 |
-
showcoastlines=True,
|
567 |
-
landcolor='rgb(243, 243, 243)',
|
568 |
-
countrycolor='rgb(204, 204, 204)',
|
569 |
-
coastlinecolor='rgb(214, 214, 214)',
|
570 |
-
showocean=True,
|
571 |
-
oceancolor='rgb(230, 250, 255)',
|
572 |
-
lataxis=dict(range=[0, 50]),
|
573 |
-
lonaxis=dict(range=[100, 180]),
|
574 |
-
center=dict(lat=20, lon=140)
|
575 |
)
|
576 |
)
|
577 |
-
|
578 |
-
# Plot routes colored by cluster
|
579 |
-
for route, cluster_id in zip(routes, clusters):
|
580 |
-
fig.add_trace(go.Scattergeo(
|
581 |
-
lon=route[:, 0],
|
582 |
-
lat=route[:, 1],
|
583 |
-
mode='lines',
|
584 |
-
line=dict(
|
585 |
-
width=1,
|
586 |
-
color=f'hsl({cluster_id * 360/n_clusters}, 50%, 50%)'
|
587 |
-
),
|
588 |
-
name=f'Cluster {cluster_id + 1}',
|
589 |
-
showlegend=False
|
590 |
-
))
|
591 |
-
|
592 |
-
# Plot cluster centers
|
593 |
-
for i in range(n_clusters):
|
594 |
-
center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
595 |
-
fig.add_trace(go.Scattergeo(
|
596 |
-
lon=center[:, 0],
|
597 |
-
lat=center[:, 1],
|
598 |
-
mode='lines',
|
599 |
-
name=f'Cluster {i+1} Center',
|
600 |
-
line=dict(
|
601 |
-
width=3,
|
602 |
-
color=f'hsl({i * 360/n_clusters}, 100%, 50%)'
|
603 |
-
)
|
604 |
-
))
|
605 |
-
|
606 |
-
# Generate statistics text
|
607 |
-
stats_text = "### Clustering Results\n\n"
|
608 |
-
cluster_counts = np.bincount(clusters)
|
609 |
-
for i in range(n_clusters):
|
610 |
-
stats_text += f"- Cluster {i+1}: {cluster_counts[i]} typhoons\n"
|
611 |
-
|
612 |
-
return fig, stats_text
|
613 |
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
season = self.ibtracs.get_season(year)
|
618 |
-
storm_summary = season.summary()
|
619 |
-
|
620 |
-
typhoon_options = []
|
621 |
-
for i in range(storm_summary['season_storms']):
|
622 |
-
storm_id = storm_summary['id'][i]
|
623 |
-
storm_name = storm_summary['name'][i]
|
624 |
-
typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
|
625 |
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
|
|
|
|
635 |
|
636 |
-
|
637 |
-
|
638 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
|
640 |
-
# Base map setup with correct scaling
|
641 |
fig.update_layout(
|
642 |
-
title=f"{year}
|
|
|
643 |
geo=dict(
|
644 |
projection_type='natural earth',
|
645 |
showland=True,
|
@@ -648,9 +740,6 @@ class TyphoonAnalyzer:
|
|
648 |
coastlinecolor='rgb(100, 100, 100)',
|
649 |
showocean=True,
|
650 |
oceancolor='rgb(230, 250, 255)',
|
651 |
-
lataxis=dict(range=[0, 50]),
|
652 |
-
lonaxis=dict(range=[100, 180]),
|
653 |
-
center=dict(lat=20, lon=140),
|
654 |
),
|
655 |
updatemenus=[{
|
656 |
"buttons": [
|
@@ -677,375 +766,561 @@ class TyphoonAnalyzer:
|
|
677 |
"xanchor": "right",
|
678 |
"y": 0,
|
679 |
"yanchor": "top"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
680 |
}]
|
681 |
)
|
682 |
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
r34_se = storm.dict.get('USA_R34_SE', [None])[i] if 'USA_R34_SE' in storm.dict else None
|
693 |
-
r34_sw = storm.dict.get('USA_R34_SW', [None])[i] if 'USA_R34_SW' in storm.dict else None
|
694 |
-
r34_nw = storm.dict.get('USA_R34_NW', [None])[i] if 'USA_R34_NW' in storm.dict else None
|
695 |
-
rmw = storm.dict.get('USA_RMW', [None])[i] if 'USA_RMW' in storm.dict else None
|
696 |
-
eye = storm.dict.get('USA_EYE', [None])[i] if 'USA_EYE' in storm.dict else None
|
697 |
|
698 |
-
if any(
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
fig.frames = frames
|
733 |
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
name='Complete Path',
|
742 |
-
showlegend=True,
|
743 |
-
)
|
744 |
-
)
|
745 |
-
|
746 |
-
fig.add_trace(
|
747 |
-
go.Scattergeo(
|
748 |
-
lon=[storm.lon[0]],
|
749 |
-
lat=[storm.lat[0]],
|
750 |
-
mode='markers',
|
751 |
-
marker=dict(size=10, color='green', symbol='star'),
|
752 |
-
name='Starting Point',
|
753 |
-
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
|
754 |
-
hoverinfo='text+name',
|
755 |
)
|
756 |
)
|
757 |
-
|
758 |
-
# Add slider for frame selection
|
759 |
-
sliders = [{
|
760 |
-
"active": 0,
|
761 |
-
"yanchor": "top",
|
762 |
-
"xanchor": "left",
|
763 |
-
"currentvalue": {
|
764 |
-
"font": {"size": 20},
|
765 |
-
"prefix": "Time: ",
|
766 |
-
"visible": True,
|
767 |
-
"xanchor": "right"
|
768 |
-
},
|
769 |
-
"transition": {"duration": 100, "easing": "cubic-in-out"},
|
770 |
-
"pad": {"b": 10, "t": 50},
|
771 |
-
"len": 0.9,
|
772 |
-
"x": 0.1,
|
773 |
-
"y": 0,
|
774 |
-
"steps": [
|
775 |
-
{
|
776 |
-
"args": [[f"frame{k}"],
|
777 |
-
{"frame": {"duration": 100, "redraw": True},
|
778 |
-
"mode": "immediate",
|
779 |
-
"transition": {"duration": 0}}
|
780 |
-
],
|
781 |
-
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
|
782 |
-
"method": "animate"
|
783 |
-
}
|
784 |
-
for k in range(len(storm.time))
|
785 |
-
]
|
786 |
-
}]
|
787 |
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
- **Peak Category:** {self.categorize_typhoon_by_standard(max(storm.vmax), standard)[0]}
|
799 |
-
"""
|
800 |
-
|
801 |
-
return fig, info_text
|
802 |
-
|
803 |
-
def search_typhoons(self, query):
|
804 |
-
"""Search for typhoons by name"""
|
805 |
-
if not query:
|
806 |
-
return go.Figure(), "Please enter a typhoon name to search"
|
807 |
|
808 |
-
|
809 |
-
matching_storms = []
|
810 |
|
811 |
-
#
|
812 |
-
|
813 |
-
|
|
|
|
|
|
|
814 |
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
824 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
825 |
|
826 |
-
if not
|
827 |
-
return
|
828 |
|
829 |
-
|
830 |
-
|
831 |
|
832 |
-
|
833 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
834 |
geo=dict(
|
835 |
-
projection_type='
|
836 |
showland=True,
|
837 |
landcolor='rgb(243, 243, 243)',
|
838 |
countrycolor='rgb(204, 204, 204)',
|
839 |
coastlinecolor='rgb(100, 100, 100)',
|
840 |
showocean=True,
|
841 |
oceancolor='rgb(230, 250, 255)',
|
842 |
-
lataxis=
|
843 |
-
lonaxis=
|
844 |
-
center=
|
845 |
-
)
|
|
|
846 |
)
|
847 |
|
848 |
-
|
849 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
850 |
|
851 |
-
|
852 |
-
|
|
|
|
|
|
|
853 |
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
mode='lines',
|
858 |
-
line=dict(width=3, color=color),
|
859 |
-
name=f"{storm.name} ({year})",
|
860 |
-
hovertemplate=(
|
861 |
-
f"Name: {storm.name}<br>"
|
862 |
-
f"Year: {year}<br>"
|
863 |
-
f"Max Wind: {max(storm.vmax):.1f} kt<br>"
|
864 |
-
f"Min Pressure: {min(storm.mslp):.1f} hPa<br>"
|
865 |
-
f"Position: %{lat:.2f}°N, %{lon:.2f}°E"
|
866 |
-
)
|
867 |
-
))
|
868 |
-
|
869 |
-
# Add starting points
|
870 |
-
for i, (year, storm) in enumerate(matching_storms):
|
871 |
-
color = colors[i % len(colors)]
|
872 |
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
mode='markers',
|
877 |
-
marker=dict(size=10, color=color, symbol='circle'),
|
878 |
-
name=f"Start: {storm.name} ({year})",
|
879 |
-
showlegend=False,
|
880 |
-
hoverinfo='name'
|
881 |
-
))
|
882 |
-
|
883 |
-
# Create information text
|
884 |
-
info_text = f"### Found {len(matching_storms)} typhoons matching '{query}':\n\n"
|
885 |
-
|
886 |
-
for year, storm in matching_storms:
|
887 |
-
info_text += f"- **{storm.name} ({year})**\n"
|
888 |
-
info_text += f" - Time: {storm.time[0].strftime('%Y-%m-%d')} to {storm.time[-1].strftime('%Y-%m-%d')}\n"
|
889 |
-
info_text += f" - Max Wind: {max(storm.vmax):.1f} kt\n"
|
890 |
-
info_text += f" - Min Pressure: {min(storm.mslp):.1f} hPa\n"
|
891 |
-
info_text += f" - Category: {self.categorize_typhoon_by_standard(max(storm.vmax))[0]}\n\n"
|
892 |
-
|
893 |
-
return fig, info_text
|
894 |
-
|
895 |
-
def categorize_typhoon_by_standard(self, wind_speed, standard='atlantic'):
|
896 |
-
"""
|
897 |
-
Categorize typhoon based on wind speed and chosen standard
|
898 |
-
wind_speed is in knots
|
899 |
-
"""
|
900 |
-
if standard == 'taiwan':
|
901 |
-
# Convert knots to m/s for Taiwan standard
|
902 |
-
wind_speed_ms = wind_speed * 0.514444
|
903 |
|
904 |
-
if
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
928 |
|
|
|
929 |
def create_interface():
|
930 |
-
|
931 |
-
|
932 |
-
|
|
|
|
|
933 |
gr.Markdown("# Typhoon Analysis Dashboard")
|
934 |
|
935 |
-
with gr.
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
949 |
label="ENSO Phase"
|
950 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
951 |
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
with gr.Row():
|
957 |
-
wind_plot = gr.Plot(label="Wind Speed Analysis")
|
958 |
-
pressure_plot = gr.Plot(label="Pressure Analysis")
|
959 |
-
|
960 |
-
stats_text = gr.Markdown()
|
961 |
-
|
962 |
-
# Typhoon Animation Tab
|
963 |
-
with gr.Tab("Typhoon Animation"):
|
964 |
-
with gr.Row():
|
965 |
-
animation_year = gr.Slider(
|
966 |
-
minimum=1950,
|
967 |
-
maximum=2024,
|
968 |
-
value=2020,
|
969 |
-
step=1,
|
970 |
-
label="Select Year"
|
971 |
-
)
|
972 |
-
|
973 |
-
with gr.Row():
|
974 |
-
animation_typhoon = gr.Dropdown(
|
975 |
-
choices=[],
|
976 |
-
label="Select Typhoon",
|
977 |
-
interactive=True
|
978 |
-
)
|
979 |
-
|
980 |
-
standard_dropdown = gr.Dropdown(
|
981 |
-
choices=[
|
982 |
-
{"label": "Atlantic Standard", "value": "atlantic"},
|
983 |
-
{"label": "Taiwan Standard", "value": "taiwan"}
|
984 |
-
],
|
985 |
-
value="atlantic",
|
986 |
-
label="Classification Standard"
|
987 |
-
)
|
988 |
-
|
989 |
-
animation_btn = gr.Button("Show Typhoon Path", variant="primary")
|
990 |
-
animation_plot = gr.Plot(label="Typhoon Path Animation")
|
991 |
-
animation_info = gr.Markdown()
|
992 |
-
|
993 |
-
# Search Tab
|
994 |
-
with gr.Tab("Typhoon Search"):
|
995 |
-
with gr.Row():
|
996 |
-
search_input = gr.Textbox(label="Search Typhoon Name")
|
997 |
-
search_btn = gr.Button("Search Typhoons", variant="primary")
|
998 |
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
update_typhoon_choices,
|
1026 |
-
inputs=[animation_year],
|
1027 |
-
outputs=[animation_typhoon]
|
1028 |
-
)
|
1029 |
-
|
1030 |
-
animation_btn.click(
|
1031 |
-
analyzer.create_typhoon_animation,
|
1032 |
-
inputs=[animation_year, animation_typhoon, standard_dropdown],
|
1033 |
-
outputs=[animation_plot, animation_info]
|
1034 |
-
)
|
1035 |
-
|
1036 |
-
# Connect events for Search tab
|
1037 |
-
search_btn.click(
|
1038 |
-
analyzer.search_typhoons,
|
1039 |
-
inputs=[search_input],
|
1040 |
-
outputs=[search_results, search_info]
|
1041 |
-
)
|
1042 |
-
|
1043 |
return demo
|
1044 |
|
|
|
1045 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1046 |
demo = create_interface()
|
1047 |
-
demo.launch(
|
1048 |
-
server_name="0.0.0.0",
|
1049 |
-
server_port=7860,
|
1050 |
-
share=True
|
1051 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
|
|
4 |
import pickle
|
5 |
import tropycal.tracks as tracks
|
6 |
import pandas as pd
|
|
|
9 |
import functools
|
10 |
import hashlib
|
11 |
import os
|
12 |
+
import argparse
|
13 |
from datetime import datetime, timedelta
|
14 |
+
from datetime import date, datetime
|
15 |
from scipy import stats
|
16 |
from scipy.optimize import minimize, curve_fit
|
17 |
from sklearn.linear_model import LinearRegression
|
18 |
from sklearn.cluster import KMeans
|
19 |
from scipy.interpolate import interp1d
|
20 |
from fractions import Fraction
|
21 |
+
from concurrent.futures import ThreadPoolExecutor
|
22 |
+
from sklearn.metrics import mean_squared_error
|
23 |
import statsmodels.api as sm
|
24 |
+
import schedule
|
25 |
import time
|
26 |
import threading
|
27 |
import requests
|
|
|
31 |
from collections import defaultdict
|
32 |
import shutil
|
33 |
import filecmp
|
|
|
|
|
34 |
|
35 |
+
# Add command-line argument parsing
|
36 |
+
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
|
37 |
+
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
|
38 |
+
args = parser.parse_args()
|
39 |
+
|
40 |
+
# Use the command-line argument for data path
|
41 |
+
DATA_PATH = args.data_path
|
42 |
+
|
43 |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
44 |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
45 |
+
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
|
46 |
+
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
|
47 |
+
|
48 |
CACHE_FILE = 'ibtracs_cache.pkl'
|
49 |
CACHE_EXPIRY_DAYS = 1
|
50 |
+
last_oni_update = None
|
51 |
|
52 |
+
|
53 |
+
def should_update_oni():
|
54 |
+
today = datetime.now()
|
55 |
+
# Beginning of the month: 1st day
|
56 |
+
if today.day == 1:
|
57 |
+
return True
|
58 |
+
# Middle of the month: 15th day
|
59 |
+
if today.day == 15:
|
60 |
+
return True
|
61 |
+
# End of the month: last day
|
62 |
+
if today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day:
|
63 |
+
return True
|
64 |
+
return False
|
65 |
+
|
66 |
+
color_map = {
|
67 |
+
'C5 Super Typhoon': 'rgb(255, 0, 0)', # Red
|
68 |
+
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', # Red-Orange
|
69 |
+
'C3 Strong Typhoon': 'rgb(255, 127, 0)', # Orange
|
70 |
+
'C2 Typhoon': 'rgb(255, 191, 0)', # Orange-Yellow
|
71 |
+
'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow
|
72 |
+
'Tropical Storm': 'rgb(0, 255, 255)', # Cyan
|
73 |
+
'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue
|
74 |
}
|
75 |
|
76 |
+
def convert_typhoondata(input_file, output_file):
|
77 |
+
with open(input_file, 'r') as infile:
|
78 |
+
# Skip the title and the unit line.
|
79 |
+
next(infile)
|
80 |
+
next(infile)
|
81 |
|
82 |
+
reader = csv.reader(infile)
|
|
|
|
|
83 |
|
84 |
+
# Used for storing data for each SID
|
85 |
+
sid_data = defaultdict(list)
|
86 |
|
87 |
+
for row in reader:
|
88 |
+
if not row: # Skip the blank lines
|
89 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
sid = row[0]
|
92 |
+
iso_time = row[6]
|
93 |
+
sid_data[sid].append((row, iso_time))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
with open(output_file, 'w', newline='') as outfile:
|
96 |
+
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
|
97 |
+
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
|
|
98 |
|
99 |
+
writer.writeheader()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
for sid, data in sid_data.items():
|
102 |
+
start_date = min(data, key=lambda x: x[1])[1]
|
103 |
+
end_date = max(data, key=lambda x: x[1])[1]
|
104 |
+
|
105 |
+
for row, iso_time in data:
|
106 |
+
writer.writerow({
|
107 |
+
'SID': row[0],
|
108 |
+
'ISO_TIME': iso_time,
|
109 |
+
'LAT': row[8],
|
110 |
+
'LON': row[9],
|
111 |
+
'SEASON': row[1],
|
112 |
+
'NAME': row[5],
|
113 |
+
'WMO_WIND': row[10].strip() or ' ',
|
114 |
+
'WMO_PRES': row[11].strip() or ' ',
|
115 |
+
'USA_WIND': row[23].strip() or ' ',
|
116 |
+
'USA_PRES': row[24].strip() or ' ',
|
117 |
+
'START_DATE': start_date,
|
118 |
+
'END_DATE': end_date
|
119 |
+
})
|
120 |
+
|
121 |
+
|
122 |
+
def download_oni_file(url, filename):
|
123 |
+
print(f"Downloading file from {url}...")
|
124 |
+
try:
|
125 |
+
response = requests.get(url)
|
126 |
+
response.raise_for_status() # Raises an exception for non-200 status codes
|
127 |
+
with open(filename, 'wb') as f:
|
128 |
+
f.write(response.content)
|
129 |
+
print(f"File successfully downloaded and saved as {filename}")
|
130 |
+
return True
|
131 |
+
except requests.RequestException as e:
|
132 |
+
print(f"Download failed. Error: {e}")
|
133 |
+
return False
|
134 |
+
|
135 |
+
|
136 |
+
def convert_oni_ascii_to_csv(input_file, output_file):
|
137 |
+
data = defaultdict(lambda: [''] * 12)
|
138 |
+
season_to_month = {
|
139 |
+
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
140 |
+
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
141 |
+
}
|
142 |
+
|
143 |
+
print(f"Attempting to read file: {input_file}")
|
144 |
+
try:
|
145 |
with open(input_file, 'r') as f:
|
146 |
+
lines = f.readlines()
|
147 |
+
print(f"Successfully read {len(lines)} lines")
|
148 |
+
|
149 |
+
if len(lines) <= 1:
|
150 |
+
print("Error: File is empty or contains only header")
|
151 |
+
return
|
152 |
+
|
153 |
+
for line in lines[1:]: # Skip header
|
154 |
parts = line.split()
|
155 |
if len(parts) >= 4:
|
156 |
+
season, year = parts[0], parts[1]
|
157 |
+
anom = parts[-1]
|
158 |
+
|
159 |
if season in season_to_month:
|
160 |
month = season_to_month[season]
|
161 |
+
|
162 |
if season == 'DJF':
|
163 |
year = str(int(year) - 1)
|
164 |
+
|
165 |
data[year][month-1] = anom
|
166 |
+
else:
|
167 |
+
print(f"Warning: Unknown season: {season}")
|
168 |
+
else:
|
169 |
+
print(f"Warning: Skipping invalid line: {line.strip()}")
|
170 |
+
|
171 |
+
print(f"Processed data for {len(data)} years")
|
172 |
+
except Exception as e:
|
173 |
+
print(f"Error reading file: {e}")
|
174 |
+
return
|
175 |
|
176 |
+
print(f"Attempting to write file: {output_file}")
|
177 |
+
try:
|
178 |
with open(output_file, 'w', newline='') as f:
|
179 |
writer = csv.writer(f)
|
180 |
+
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
|
181 |
+
|
182 |
for year in sorted(data.keys()):
|
183 |
+
row = [year] + data[year]
|
184 |
+
writer.writerow(row)
|
185 |
+
|
186 |
+
print(f"Successfully wrote {len(data)} rows of data")
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Error writing file: {e}")
|
189 |
+
return
|
190 |
|
191 |
+
print(f"Conversion complete. Data saved to {output_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
def update_oni_data():
|
194 |
+
global last_oni_update
|
195 |
+
current_date = date.today()
|
196 |
+
|
197 |
+
# Check if already updated today
|
198 |
+
if last_oni_update == current_date:
|
199 |
+
print("ONI data already checked today. Skipping update.")
|
200 |
+
return
|
201 |
+
|
202 |
+
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
203 |
+
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
204 |
+
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
|
205 |
+
output_file = ONI_DATA_PATH
|
206 |
+
|
207 |
+
if download_oni_file(url, temp_file):
|
208 |
+
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
|
209 |
+
# File doesn't exist or has been updated
|
210 |
+
os.replace(temp_file, input_file)
|
211 |
+
print("New ONI data detected. Converting to CSV.")
|
212 |
+
convert_oni_ascii_to_csv(input_file, output_file)
|
213 |
+
print("ONI data updated successfully.")
|
214 |
else:
|
215 |
+
print("ONI data is up to date. No conversion needed.")
|
216 |
+
os.remove(temp_file) # Remove temporary file
|
217 |
+
|
218 |
+
last_oni_update = current_date
|
219 |
+
else:
|
220 |
+
print("Failed to download ONI data.")
|
221 |
+
if os.path.exists(temp_file):
|
222 |
+
os.remove(temp_file) # Ensure cleanup of temporary file
|
223 |
+
|
224 |
+
def load_ibtracs_data():
|
225 |
+
if os.path.exists(CACHE_FILE):
|
226 |
+
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
227 |
+
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
228 |
+
print("Loading data from cache...")
|
229 |
+
with open(CACHE_FILE, 'rb') as f:
|
230 |
+
return pickle.load(f)
|
231 |
+
|
232 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
233 |
+
print("Using local IBTrACS file...")
|
234 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
235 |
+
else:
|
236 |
+
print("Local IBTrACS file not found. Fetching data from remote server...")
|
237 |
+
try:
|
238 |
response = requests.get(iBtrace_uri)
|
239 |
response.raise_for_status()
|
240 |
+
|
241 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
242 |
+
temp_file.write(response.text)
|
243 |
+
temp_file_path = temp_file.name
|
244 |
+
|
245 |
+
# Save the downloaded data as the local file
|
246 |
+
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
247 |
+
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
|
248 |
+
|
249 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
250 |
+
except requests.RequestException as e:
|
251 |
+
print(f"Error downloading data: {e}")
|
252 |
+
print("No local file available and download failed. Unable to load IBTrACS data.")
|
253 |
+
return None
|
254 |
+
|
255 |
+
with open(CACHE_FILE, 'wb') as f:
|
256 |
+
pickle.dump(ibtracs, f)
|
257 |
+
|
258 |
+
return ibtracs
|
259 |
+
|
260 |
+
def update_ibtracs_data():
|
261 |
+
global ibtracs
|
262 |
+
print("Checking for IBTrACS data updates...")
|
263 |
|
264 |
+
try:
|
265 |
+
# Get the last-modified time of the remote file
|
266 |
+
response = requests.head(iBtrace_uri)
|
267 |
+
remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT')
|
268 |
|
269 |
+
# Get the last-modified time of the local file
|
270 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
271 |
+
local_last_modified = datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
|
272 |
+
else:
|
273 |
+
local_last_modified = datetime.min
|
274 |
+
|
275 |
+
# Compare the modification times
|
276 |
+
if remote_last_modified <= local_last_modified:
|
277 |
+
print("Local IBTrACS data is up to date. No update needed.")
|
278 |
+
if os.path.exists(CACHE_FILE):
|
279 |
+
# Update the cache file's timestamp to extend its validity
|
280 |
+
os.utime(CACHE_FILE, None)
|
281 |
+
print("Cache file timestamp updated.")
|
282 |
+
return
|
283 |
+
|
284 |
+
print("Remote data is newer. Updating IBTrACS data...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
# Download the new data
|
287 |
+
response = requests.get(iBtrace_uri)
|
288 |
+
response.raise_for_status()
|
289 |
+
|
290 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
291 |
+
temp_file.write(response.text)
|
292 |
+
temp_file_path = temp_file.name
|
293 |
|
294 |
+
# Save the downloaded data as the local file
|
295 |
+
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
296 |
+
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
|
297 |
|
298 |
+
# Update the last modified time of the local file to match the remote file
|
299 |
+
os.utime(LOCAL_iBtrace_PATH, (remote_last_modified.timestamp(), remote_last_modified.timestamp()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
with open(CACHE_FILE, 'wb') as f:
|
304 |
+
pickle.dump(ibtracs, f)
|
305 |
+
print("IBTrACS data updated and cache refreshed.")
|
306 |
+
|
307 |
+
except requests.RequestException as e:
|
308 |
+
print(f"Error checking or downloading data: {e}")
|
309 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
310 |
+
print("Using existing local file.")
|
311 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
312 |
+
if os.path.exists(CACHE_FILE):
|
313 |
+
# Update the cache file's timestamp even when using existing local file
|
314 |
+
os.utime(CACHE_FILE, None)
|
315 |
+
print("Cache file timestamp updated.")
|
316 |
+
else:
|
317 |
+
print("No local file available. Update failed.")
|
318 |
+
|
319 |
+
def run_schedule():
|
320 |
+
while True:
|
321 |
+
schedule.run_pending()
|
322 |
+
time.sleep(1)
|
323 |
+
|
324 |
+
def analyze_typhoon_generation(merged_data, start_date, end_date):
|
325 |
+
filtered_data = merged_data[
|
326 |
+
(merged_data['ISO_TIME'] >= start_date) &
|
327 |
+
(merged_data['ISO_TIME'] <= end_date)
|
328 |
+
]
|
329 |
+
|
330 |
+
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
331 |
+
|
332 |
+
typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict()
|
333 |
+
|
334 |
+
month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
|
335 |
+
concentrated_months = month_counts.idxmax(axis=1).to_dict()
|
336 |
+
|
337 |
+
return typhoon_counts, concentrated_months
|
338 |
+
|
339 |
+
def cache_key_generator(*args, **kwargs):
|
340 |
+
key = hashlib.md5()
|
341 |
+
for arg in args:
|
342 |
+
key.update(str(arg).encode())
|
343 |
+
for k, v in sorted(kwargs.items()):
|
344 |
+
key.update(str(k).encode())
|
345 |
+
key.update(str(v).encode())
|
346 |
+
return key.hexdigest()
|
347 |
+
|
348 |
+
def categorize_typhoon(wind_speed):
|
349 |
+
wind_speed_kt = wind_speed / 2 # Convert kt to m/s
|
350 |
+
|
351 |
+
# Add category classification
|
352 |
+
if wind_speed_kt >= 137/2.35:
|
353 |
+
return 'C5 Super Typhoon'
|
354 |
+
elif wind_speed_kt >= 113/2.35:
|
355 |
+
return 'C4 Very Strong Typhoon'
|
356 |
+
elif wind_speed_kt >= 96/2.35:
|
357 |
+
return 'C3 Strong Typhoon'
|
358 |
+
elif wind_speed_kt >= 83/2.35:
|
359 |
+
return 'C2 Typhoon'
|
360 |
+
elif wind_speed_kt >= 64/2.35:
|
361 |
+
return 'C1 Typhoon'
|
362 |
+
elif wind_speed_kt >= 34/2.35:
|
363 |
+
return 'Tropical Storm'
|
364 |
+
else:
|
365 |
+
return 'Tropical Depression'
|
366 |
+
|
367 |
+
@functools.lru_cache(maxsize=None)
|
368 |
+
def process_oni_data_cached(oni_data_hash):
|
369 |
+
return process_oni_data(oni_data)
|
370 |
+
|
371 |
+
def process_oni_data(oni_data):
|
372 |
+
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
373 |
+
oni_long['Month'] = oni_long['Month'].map({
|
374 |
+
'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
|
375 |
+
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'
|
376 |
+
})
|
377 |
+
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
|
378 |
+
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
|
379 |
+
return oni_long
|
380 |
+
|
381 |
+
def process_oni_data_with_cache(oni_data):
|
382 |
+
oni_data_hash = cache_key_generator(oni_data.to_json())
|
383 |
+
return process_oni_data_cached(oni_data_hash)
|
384 |
+
|
385 |
+
@functools.lru_cache(maxsize=None)
|
386 |
+
def process_typhoon_data_cached(typhoon_data_hash):
|
387 |
+
return process_typhoon_data(typhoon_data)
|
388 |
+
|
389 |
+
def process_typhoon_data(typhoon_data):
|
390 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
391 |
+
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
392 |
+
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
|
393 |
+
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
|
394 |
+
|
395 |
+
typhoon_max = typhoon_data.groupby('SID').agg({
|
396 |
+
'USA_WIND': 'max',
|
397 |
+
'USA_PRES': 'min',
|
398 |
+
'ISO_TIME': 'first',
|
399 |
+
'SEASON': 'first',
|
400 |
+
'NAME': 'first',
|
401 |
+
'LAT': 'first',
|
402 |
+
'LON': 'first'
|
403 |
+
}).reset_index()
|
404 |
+
|
405 |
+
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
|
406 |
+
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
|
407 |
+
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
|
408 |
+
return typhoon_max
|
409 |
+
|
410 |
+
def process_typhoon_data_with_cache(typhoon_data):
|
411 |
+
typhoon_data_hash = cache_key_generator(typhoon_data.to_json())
|
412 |
+
return process_typhoon_data_cached(typhoon_data_hash)
|
413 |
+
|
414 |
+
def merge_data(oni_long, typhoon_max):
|
415 |
+
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
|
416 |
+
|
417 |
+
def calculate_logistic_regression(merged_data):
|
418 |
+
data = merged_data.dropna(subset=['USA_WIND', 'ONI'])
|
419 |
+
|
420 |
+
# Create binary outcome for severe typhoons
|
421 |
+
data['severe_typhoon'] = (data['USA_WIND'] >= 51).astype(int)
|
422 |
+
|
423 |
+
# Create binary predictor for El Niño
|
424 |
+
data['el_nino'] = (data['ONI'] >= 0.5).astype(int)
|
425 |
+
|
426 |
+
X = data['el_nino']
|
427 |
+
X = sm.add_constant(X) # Add constant term
|
428 |
+
y = data['severe_typhoon']
|
429 |
+
|
430 |
+
model = sm.Logit(y, X).fit()
|
431 |
+
|
432 |
+
beta_1 = model.params['el_nino']
|
433 |
+
exp_beta_1 = np.exp(beta_1)
|
434 |
+
p_value = model.pvalues['el_nino']
|
435 |
+
|
436 |
+
return beta_1, exp_beta_1, p_value
|
437 |
+
|
438 |
+
@cachetools.cached(cache={})
|
439 |
+
def fetch_oni_data_from_csv(file_path):
|
440 |
+
df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90')
|
441 |
+
df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
442 |
+
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
443 |
+
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
444 |
+
df = df.set_index('Date')
|
445 |
+
return df
|
446 |
+
|
447 |
+
def classify_enso_phases(oni_value):
|
448 |
+
if isinstance(oni_value, pd.Series):
|
449 |
+
oni_value = oni_value.iloc[0]
|
450 |
+
if oni_value >= 0.5:
|
451 |
+
return 'El Nino'
|
452 |
+
elif oni_value <= -0.5:
|
453 |
+
return 'La Nina'
|
454 |
+
else:
|
455 |
+
return 'Neutral'
|
456 |
|
457 |
+
def load_data(oni_data_path, typhoon_data_path):
|
458 |
+
oni_data = pd.read_csv(oni_data_path)
|
459 |
+
typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False)
|
460 |
+
|
461 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
462 |
+
|
463 |
+
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
464 |
+
|
465 |
+
print(f"Typhoon data shape after cleaning: {typhoon_data.shape}")
|
466 |
+
print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}")
|
467 |
+
|
468 |
+
return oni_data, typhoon_data
|
469 |
|
470 |
+
def preprocess_data(oni_data, typhoon_data):
|
471 |
+
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
472 |
+
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
473 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
474 |
+
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
|
475 |
+
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
|
476 |
+
|
477 |
+
monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index()
|
478 |
+
|
479 |
+
oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
|
480 |
+
oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month)
|
481 |
+
|
482 |
+
merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month'])
|
483 |
+
|
484 |
+
return merged_data
|
485 |
+
|
486 |
+
def calculate_max_wind_min_pressure(typhoon_data):
|
487 |
+
max_wind_speed = typhoon_data['USA_WIND'].max()
|
488 |
+
min_pressure = typhoon_data['WMO_PRES'].min()
|
489 |
+
return max_wind_speed, min_pressure
|
490 |
+
|
491 |
+
@functools.lru_cache(maxsize=None)
|
492 |
+
def get_storm_data(storm_id):
|
493 |
+
return ibtracs.get_storm(storm_id)
|
494 |
+
|
495 |
+
def filter_west_pacific_coordinates(lons, lats):
|
496 |
+
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
|
497 |
+
return lons[mask], lats[mask]
|
498 |
+
|
499 |
+
def polynomial_exp(x, a, b, c, d):
|
500 |
+
return a * x**2 + b * x + c + d * np.exp(x)
|
501 |
+
|
502 |
+
def exponential(x, a, b, c):
|
503 |
+
return a * np.exp(b * x) + c
|
504 |
+
|
505 |
+
def generate_cluster_equations(cluster_center):
|
506 |
+
X = cluster_center[:, 0] # Longitudes
|
507 |
+
y = cluster_center[:, 1] # Latitudes
|
508 |
+
|
509 |
+
x_min = X.min()
|
510 |
+
x_max = X.max()
|
511 |
+
|
512 |
+
equations = []
|
513 |
+
|
514 |
+
# Fourier Series (up to 4th order)
|
515 |
+
def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4):
|
516 |
+
return (a0 + a1*np.cos(x) + b1*np.sin(x) +
|
517 |
+
a2*np.cos(2*x) + b2*np.sin(2*x) +
|
518 |
+
a3*np.cos(3*x) + b3*np.sin(3*x) +
|
519 |
+
a4*np.cos(4*x) + b4*np.sin(4*x))
|
520 |
+
|
521 |
+
# Normalize X to the range [0, 2π]
|
522 |
+
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
|
523 |
+
|
524 |
+
params, _ = curve_fit(fourier_series, X_normalized, y)
|
525 |
+
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
|
526 |
+
|
527 |
+
# Create the equation string
|
528 |
+
fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + "
|
529 |
+
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + "
|
530 |
+
f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + "
|
531 |
+
f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)")
|
532 |
+
|
533 |
+
equations.append(("Fourier Series", fourier_eq))
|
534 |
+
equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}"))
|
535 |
+
equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E"))
|
536 |
+
|
537 |
+
return equations, (x_min, x_max)
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
|
542 |
+
# Classification standards
|
543 |
+
atlantic_standard = {
|
544 |
+
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
|
545 |
+
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
|
546 |
+
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
|
547 |
+
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
|
548 |
+
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
|
549 |
+
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
|
550 |
+
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
|
551 |
+
}
|
552 |
+
|
553 |
+
taiwan_standard = {
|
554 |
+
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s
|
555 |
+
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s
|
556 |
+
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s
|
557 |
+
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s
|
558 |
+
}
|
559 |
+
|
560 |
+
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
|
561 |
+
"""
|
562 |
+
Categorize typhoon based on wind speed and chosen standard
|
563 |
+
wind_speed is in knots
|
564 |
+
"""
|
565 |
+
if standard == 'taiwan':
|
566 |
+
# Convert knots to m/s for Taiwan standard
|
567 |
+
wind_speed_ms = wind_speed * 0.514444
|
568 |
+
|
569 |
+
if wind_speed_ms >= 51.0:
|
570 |
+
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
|
571 |
+
elif wind_speed_ms >= 33.7:
|
572 |
+
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
|
573 |
+
elif wind_speed_ms >= 17.2:
|
574 |
+
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
|
575 |
+
else:
|
576 |
+
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
|
577 |
+
else:
|
578 |
+
# Atlantic standard uses knots
|
579 |
if wind_speed >= 137:
|
580 |
+
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
|
581 |
elif wind_speed >= 113:
|
582 |
+
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
|
583 |
elif wind_speed >= 96:
|
584 |
+
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
|
585 |
elif wind_speed >= 83:
|
586 |
+
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
|
587 |
elif wind_speed >= 64:
|
588 |
+
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
|
589 |
elif wind_speed >= 34:
|
590 |
+
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
|
591 |
else:
|
592 |
+
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
593 |
|
594 |
+
# Initialize data at startup
|
595 |
+
def initialize_data():
|
596 |
+
global oni_df, ibtracs, oni_data, typhoon_data, oni_long, typhoon_max, merged_data, data, max_wind_speed, min_pressure
|
597 |
+
|
598 |
+
print(f"Using data path: {DATA_PATH}")
|
599 |
+
# Update ONI data before starting the application
|
600 |
+
update_oni_data()
|
601 |
+
oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
|
602 |
+
ibtracs = load_ibtracs_data()
|
603 |
+
|
604 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
605 |
+
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
|
606 |
+
|
607 |
+
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
|
608 |
+
oni_long = process_oni_data(oni_data)
|
609 |
+
typhoon_max = process_typhoon_data(typhoon_data)
|
610 |
+
merged_data = merge_data(oni_long, typhoon_max)
|
611 |
+
data = preprocess_data(oni_data, typhoon_data)
|
612 |
+
max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
|
613 |
+
|
614 |
+
# Schedule data updates
|
615 |
+
schedule.every().day.at("01:00").do(update_ibtracs_data)
|
616 |
+
schedule.every().day.at("00:00").do(lambda: update_oni_data() if should_update_oni() else None)
|
617 |
+
|
618 |
+
# Run the scheduler in a separate thread
|
619 |
+
scheduler_thread = threading.Thread(target=run_schedule)
|
620 |
+
scheduler_thread.daemon = True
|
621 |
+
scheduler_thread.start()
|
622 |
+
|
623 |
+
return oni_df, ibtracs, typhoon_data
|
624 |
+
|
625 |
+
# Function to get available years from typhoon data
|
626 |
+
def get_available_years():
|
627 |
+
if typhoon_data is None:
|
628 |
+
return []
|
629 |
+
years = typhoon_data['ISO_TIME'].dt.year.unique()
|
630 |
+
years = years[~np.isnan(years)]
|
631 |
+
years = sorted(years)
|
632 |
+
return years
|
633 |
+
|
634 |
+
# Function to get available typhoons for a selected year
|
635 |
+
def get_typhoons_for_year(year):
|
636 |
+
if not year or ibtracs is None:
|
637 |
+
return []
|
638 |
+
|
639 |
+
try:
|
640 |
+
year = int(year)
|
641 |
+
season = ibtracs.get_season(year)
|
642 |
+
storm_summary = season.summary()
|
643 |
|
644 |
+
typhoon_options = []
|
645 |
+
for i in range(storm_summary['season_storms']):
|
646 |
+
storm_id = storm_summary['id'][i]
|
647 |
+
storm_name = storm_summary['name'][i]
|
648 |
+
typhoon_options.append((f"{storm_name} ({storm_id})", storm_id))
|
|
|
649 |
|
650 |
+
return typhoon_options
|
651 |
+
except Exception as e:
|
652 |
+
print(f"Error getting typhoons for year {year}: {e}")
|
653 |
+
return []
|
|
|
|
|
654 |
|
655 |
+
# Create animation for typhoon path
|
656 |
+
def create_typhoon_path_animation(year, typhoon_id, standard):
|
657 |
+
if not year or not typhoon_id:
|
658 |
+
return None
|
659 |
+
|
660 |
+
try:
|
661 |
+
storm = ibtracs.get_storm(typhoon_id)
|
662 |
fig = go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
fig.add_trace(
|
665 |
+
go.Scattergeo(
|
666 |
+
lon=storm.lon,
|
667 |
+
lat=storm.lat,
|
668 |
mode='lines',
|
669 |
+
line=dict(width=2, color='gray'),
|
670 |
+
name='Path',
|
671 |
+
showlegend=False,
|
672 |
)
|
673 |
)
|
|
|
|
|
674 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
675 |
fig.add_trace(
|
676 |
+
go.Scattergeo(
|
677 |
+
lon=[storm.lon[0]],
|
678 |
+
lat=[storm.lat[0]],
|
679 |
+
mode='markers',
|
680 |
+
marker=dict(size=10, color='green', symbol='star'),
|
681 |
+
name='Starting Point',
|
682 |
+
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
|
683 |
+
hoverinfo='text+name',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
)
|
685 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
|
687 |
+
frames = []
|
688 |
+
for i in range(len(storm.time)):
|
689 |
+
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
690 |
|
691 |
+
# Get additional data if available
|
692 |
+
r34_ne = storm.dict['USA_R34_NE'][i] if 'USA_R34_NE' in storm.dict else None
|
693 |
+
r34_se = storm.dict['USA_R34_SE'][i] if 'USA_R34_SE' in storm.dict else None
|
694 |
+
r34_sw = storm.dict['USA_R34_SW'][i] if 'USA_R34_SW' in storm.dict else None
|
695 |
+
r34_nw = storm.dict['USA_R34_NW'][i] if 'USA_R34_NW' in storm.dict else None
|
696 |
+
rmw = storm.dict['USA_RMW'][i] if 'USA_RMW' in storm.dict else None
|
697 |
+
eye_diameter = storm.dict['USA_EYE'][i] if 'USA_EYE' in storm.dict else None
|
698 |
+
|
699 |
+
radius_info = f"R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
|
700 |
+
radius_info += f"RMW: {rmw}<br>"
|
701 |
+
radius_info += f"Eye Diameter: {eye_diameter}"
|
702 |
|
703 |
+
frame_data = [
|
704 |
+
go.Scattergeo(
|
705 |
+
lon=storm.lon[:i+1],
|
706 |
+
lat=storm.lat[:i+1],
|
707 |
+
mode='lines',
|
708 |
+
line=dict(width=2, color='blue'),
|
709 |
+
name='Path Traveled',
|
710 |
+
showlegend=False,
|
711 |
+
),
|
712 |
+
go.Scattergeo(
|
713 |
+
lon=[storm.lon[i]],
|
714 |
+
lat=[storm.lat[i]],
|
715 |
+
mode='markers+text',
|
716 |
+
marker=dict(size=10, color=color, symbol='star'),
|
717 |
+
text=category,
|
718 |
+
textposition="top center",
|
719 |
+
textfont=dict(size=12, color=color),
|
720 |
+
name='Current Location',
|
721 |
+
hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
|
722 |
+
f"Category: {category}<br>"
|
723 |
+
f"Wind Speed: {storm.vmax[i]:.1f} m/s<br>"
|
724 |
+
f"{radius_info}",
|
725 |
+
hoverinfo='text',
|
726 |
+
),
|
727 |
+
]
|
728 |
+
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
729 |
+
|
730 |
+
fig.frames = frames
|
731 |
|
|
|
732 |
fig.update_layout(
|
733 |
+
title=f"{year} Year {storm.name} Typhoon Path",
|
734 |
+
showlegend=False,
|
735 |
geo=dict(
|
736 |
projection_type='natural earth',
|
737 |
showland=True,
|
|
|
740 |
coastlinecolor='rgb(100, 100, 100)',
|
741 |
showocean=True,
|
742 |
oceancolor='rgb(230, 250, 255)',
|
|
|
|
|
|
|
743 |
),
|
744 |
updatemenus=[{
|
745 |
"buttons": [
|
|
|
766 |
"xanchor": "right",
|
767 |
"y": 0,
|
768 |
"yanchor": "top"
|
769 |
+
}],
|
770 |
+
sliders=[{
|
771 |
+
"active": 0,
|
772 |
+
"yanchor": "top",
|
773 |
+
"xanchor": "left",
|
774 |
+
"currentvalue": {
|
775 |
+
"font": {"size": 20},
|
776 |
+
"prefix": "Time: ",
|
777 |
+
"visible": True,
|
778 |
+
"xanchor": "right"
|
779 |
+
},
|
780 |
+
"transition": {"duration": 100, "easing": "cubic-in-out"},
|
781 |
+
"pad": {"b": 10, "t": 50},
|
782 |
+
"len": 0.9,
|
783 |
+
"x": 0.1,
|
784 |
+
"y": 0,
|
785 |
+
"steps": [
|
786 |
+
{
|
787 |
+
"args": [[f"frame{k}"],
|
788 |
+
{"frame": {"duration": 100, "redraw": True},
|
789 |
+
"mode": "immediate",
|
790 |
+
"transition": {"duration": 0}}
|
791 |
+
],
|
792 |
+
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
|
793 |
+
"method": "animate"
|
794 |
+
}
|
795 |
+
for k in range(len(storm.time))
|
796 |
+
]
|
797 |
}]
|
798 |
)
|
799 |
|
800 |
+
return fig
|
801 |
+
except Exception as e:
|
802 |
+
print(f"Error creating typhoon path animation: {e}")
|
803 |
+
return None
|
804 |
+
|
805 |
+
# Function to analyze typhoon tracks
|
806 |
+
def analyze_typhoon_tracks(start_year, start_month, end_year, end_month, enso_selection, typhoon_search=""):
|
807 |
+
start_date = datetime(int(start_year), int(start_month), 1)
|
808 |
+
end_date = datetime(int(end_year), int(end_month), 28)
|
809 |
+
|
810 |
+
# Create typhoon tracks plot
|
811 |
+
fig_tracks = go.Figure()
|
812 |
+
|
813 |
+
# Map Gradio dropdown values to the values used in the original code
|
814 |
+
enso_map = {
|
815 |
+
"All Years": "all",
|
816 |
+
"El Niño Years": "el_nino",
|
817 |
+
"La Niña Years": "la_nina",
|
818 |
+
"Neutral Years": "neutral"
|
819 |
+
}
|
820 |
+
enso_value = enso_map[enso_selection]
|
821 |
+
|
822 |
+
try:
|
823 |
+
for year in range(int(start_year), int(end_year) + 1):
|
824 |
+
if year not in ibtracs.data.keys():
|
825 |
+
continue
|
826 |
|
827 |
+
season = ibtracs.get_season(year)
|
828 |
+
for storm_id in season.summary()['id']:
|
829 |
+
storm = get_storm_data(storm_id)
|
830 |
+
storm_dates = storm.time
|
|
|
|
|
|
|
|
|
|
|
831 |
|
832 |
+
if any(start_date <= date <= end_date for date in storm_dates):
|
833 |
+
storm_date_str = storm_dates[0].strftime('%Y-%b')
|
834 |
+
if storm_date_str in oni_df.index:
|
835 |
+
storm_oni = oni_df.loc[storm_date_str]['ONI']
|
836 |
+
if isinstance(storm_oni, pd.Series):
|
837 |
+
storm_oni = storm_oni.iloc[0]
|
838 |
+
|
839 |
+
phase = classify_enso_phases(storm_oni)
|
840 |
+
|
841 |
+
if (enso_value == 'all' or
|
842 |
+
(enso_value == 'el_nino' and phase == 'El Nino') or
|
843 |
+
(enso_value == 'la_nina' and phase == 'La Nina') or
|
844 |
+
(enso_value == 'neutral' and phase == 'Neutral')):
|
845 |
+
|
846 |
+
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
|
847 |
+
|
848 |
+
# Highlight searched typhoon
|
849 |
+
if typhoon_search and typhoon_search.lower() in storm.name.lower():
|
850 |
+
line_width = 5
|
851 |
+
line_color = 'yellow'
|
852 |
+
else:
|
853 |
+
line_width = 2
|
854 |
+
line_color = color
|
855 |
+
|
856 |
+
fig_tracks.add_trace(go.Scattergeo(
|
857 |
+
lon=storm.lon,
|
858 |
+
lat=storm.lat,
|
859 |
+
mode='lines',
|
860 |
+
name=storm.name,
|
861 |
+
text=f'{storm.name} ({year})',
|
862 |
+
hoverinfo='text',
|
863 |
+
line=dict(width=line_width, color=line_color)
|
864 |
+
))
|
|
|
|
|
865 |
|
866 |
+
fig_tracks.update_layout(
|
867 |
+
title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}',
|
868 |
+
geo=dict(
|
869 |
+
projection_type='natural earth',
|
870 |
+
showland=True,
|
871 |
+
coastlinecolor='rgb(100, 100, 100)',
|
872 |
+
countrycolor='rgb(204, 204, 204)',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
)
|
874 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
|
876 |
+
# Calculate statistics for this period
|
877 |
+
filtered_data = merged_data[
|
878 |
+
(merged_data['Year'] >= int(start_year)) &
|
879 |
+
(merged_data['Year'] <= int(end_year)) &
|
880 |
+
(merged_data['Month'].astype(int) >= int(start_month)) &
|
881 |
+
(merged_data['Month'].astype(int) <= int(end_month))
|
882 |
+
]
|
883 |
+
|
884 |
+
max_wind = filtered_data['USA_WIND'].max() if not filtered_data.empty else 0
|
885 |
+
min_press = filtered_data['USA_PRES'].min() if not filtered_data.empty else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
886 |
|
887 |
+
stats_text = f"Maximum Wind Speed: {max_wind:.2f} knots\nMinimum Pressure: {min_press:.2f} hPa"
|
|
|
888 |
|
889 |
+
# Create wind scatter plot
|
890 |
+
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
|
891 |
+
hover_data=['NAME', 'Year', 'Category'],
|
892 |
+
title='Wind Speed vs ONI',
|
893 |
+
labels={'ONI': 'ONI Value', 'USA_WIND': 'Maximum Wind Speed (knots)'},
|
894 |
+
color_discrete_map=color_map)
|
895 |
|
896 |
+
# Create pressure scatter plot
|
897 |
+
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
|
898 |
+
hover_data=['NAME', 'Year', 'Category'],
|
899 |
+
title='Pressure vs ONI',
|
900 |
+
labels={'ONI': 'ONI Value', 'USA_PRES': 'Minimum Pressure (hPa)'},
|
901 |
+
color_discrete_map=color_map)
|
902 |
+
|
903 |
+
return fig_tracks, wind_oni_scatter, pressure_oni_scatter, stats_text
|
904 |
+
except Exception as e:
|
905 |
+
error_fig = go.Figure()
|
906 |
+
error_fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
907 |
+
return error_fig, error_fig, error_fig, f"Error analyzing typhoon tracks: {str(e)}"
|
908 |
+
|
909 |
+
# Function to run cluster analysis
|
910 |
+
def run_cluster_analysis(start_year, start_month, end_year, end_month, n_clusters, enso_selection, analysis_type):
|
911 |
+
start_date = datetime(int(start_year), int(start_month), 1)
|
912 |
+
end_date = datetime(int(end_year), int(end_month), 28)
|
913 |
+
|
914 |
+
# Map Gradio dropdown values to the values used in the original code
|
915 |
+
enso_map = {
|
916 |
+
"All Years": "all",
|
917 |
+
"El Niño Years": "el_nino",
|
918 |
+
"La Niña Years": "la_nina",
|
919 |
+
"Neutral Years": "neutral"
|
920 |
+
}
|
921 |
+
enso_value = enso_map[enso_selection]
|
922 |
+
|
923 |
+
fig_routes = go.Figure()
|
924 |
+
|
925 |
+
try:
|
926 |
+
# Clustering analysis
|
927 |
+
west_pacific_storms = []
|
928 |
+
for year in range(int(start_year), int(end_year) + 1):
|
929 |
+
if year not in ibtracs.data.keys():
|
930 |
continue
|
931 |
+
|
932 |
+
season = ibtracs.get_season(year)
|
933 |
+
for storm_id in season.summary()['id']:
|
934 |
+
storm = get_storm_data(storm_id)
|
935 |
+
storm_date = storm.time[0]
|
936 |
+
|
937 |
+
# Try to find the ONI value for this storm date
|
938 |
+
date_str = storm_date.strftime('%Y-%b')
|
939 |
+
if date_str in oni_df.index:
|
940 |
+
storm_oni = oni_df.loc[date_str]['ONI']
|
941 |
+
if isinstance(storm_oni, pd.Series):
|
942 |
+
storm_oni = storm_oni.iloc[0]
|
943 |
+
storm_phase = classify_enso_phases(storm_oni)
|
944 |
+
|
945 |
+
if enso_value == 'all' or \
|
946 |
+
(enso_value == 'el_nino' and storm_phase == 'El Nino') or \
|
947 |
+
(enso_value == 'la_nina' and storm_phase == 'La Nina') or \
|
948 |
+
(enso_value == 'neutral' and storm_phase == 'Neutral'):
|
949 |
+
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
|
950 |
+
if len(lons) > 1: # Ensure the storm has a valid path in West Pacific
|
951 |
+
west_pacific_storms.append((lons, lats))
|
952 |
|
953 |
+
if not west_pacific_storms:
|
954 |
+
return None, "No storms found matching the criteria"
|
955 |
|
956 |
+
max_length = max(len(storm[0]) for storm in west_pacific_storms)
|
957 |
+
standardized_routes = []
|
958 |
|
959 |
+
for lons, lats in west_pacific_storms:
|
960 |
+
if len(lons) < 2: # Skip if not enough points
|
961 |
+
continue
|
962 |
+
t = np.linspace(0, 1, len(lons))
|
963 |
+
t_new = np.linspace(0, 1, max_length)
|
964 |
+
lon_interp = interp1d(t, lons, kind='linear')(t_new)
|
965 |
+
lat_interp = interp1d(t, lats, kind='linear')(t_new)
|
966 |
+
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
|
967 |
+
standardized_routes.append(route_vector)
|
968 |
+
|
969 |
+
if not standardized_routes:
|
970 |
+
return None, "Unable to create standardized routes"
|
971 |
+
|
972 |
+
kmeans = KMeans(n_clusters=int(n_clusters), random_state=42, n_init=10)
|
973 |
+
clusters = kmeans.fit_predict(standardized_routes)
|
974 |
+
|
975 |
+
# Count the number of typhoons in each cluster
|
976 |
+
cluster_counts = np.bincount(clusters)
|
977 |
+
|
978 |
+
# Draw all routes (with lighter color)
|
979 |
+
if analysis_type == "Show Routes":
|
980 |
+
for lons, lats in west_pacific_storms:
|
981 |
+
fig_routes.add_trace(go.Scattergeo(
|
982 |
+
lon=lons, lat=lats,
|
983 |
+
mode='lines',
|
984 |
+
line=dict(width=1, color='lightgray'),
|
985 |
+
showlegend=False,
|
986 |
+
hoverinfo='none'
|
987 |
+
))
|
988 |
+
|
989 |
+
equations_output = ""
|
990 |
+
# Draw cluster centroids
|
991 |
+
if analysis_type == "Show Clusters" or analysis_type == "Fourier Series":
|
992 |
+
for i in range(int(n_clusters)):
|
993 |
+
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
994 |
+
|
995 |
+
fig_routes.add_trace(go.Scattergeo(
|
996 |
+
lon=cluster_center[:, 0],
|
997 |
+
lat=cluster_center[:, 1],
|
998 |
+
mode='lines',
|
999 |
+
name=f'Cluster {i+1} (n={cluster_counts[i]})',
|
1000 |
+
line=dict(width=3)
|
1001 |
+
))
|
1002 |
+
|
1003 |
+
if analysis_type == "Fourier Series":
|
1004 |
+
cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center)
|
1005 |
+
|
1006 |
+
equations_output += f"\n--- Cluster {i+1} (Typhoons: {cluster_counts[i]}) ---\n"
|
1007 |
+
for name, eq in cluster_equations:
|
1008 |
+
equations_output += f"{name}: {eq}\n"
|
1009 |
+
|
1010 |
+
equations_output += "\nTo use in GeoGebra:\n"
|
1011 |
+
equations_output += f"1. Set x-axis from 0 to {2*np.pi:.4f}\n"
|
1012 |
+
equations_output += "2. Use the equation as is\n"
|
1013 |
+
equations_output += f"3. To convert x back to longitude: lon = {lon_min:.4f} + x * {(lon_max - lon_min) / (2*np.pi):.4f}\n\n"
|
1014 |
+
|
1015 |
+
enso_phase_text = {
|
1016 |
+
'all': 'All Years',
|
1017 |
+
'el_nino': 'El Niño Years',
|
1018 |
+
'la_nina': 'La Niña Years',
|
1019 |
+
'neutral': 'Neutral Years'
|
1020 |
+
}
|
1021 |
+
|
1022 |
+
fig_routes.update_layout(
|
1023 |
+
title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}',
|
1024 |
geo=dict(
|
1025 |
+
projection_type='mercator',
|
1026 |
showland=True,
|
1027 |
landcolor='rgb(243, 243, 243)',
|
1028 |
countrycolor='rgb(204, 204, 204)',
|
1029 |
coastlinecolor='rgb(100, 100, 100)',
|
1030 |
showocean=True,
|
1031 |
oceancolor='rgb(230, 250, 255)',
|
1032 |
+
lataxis={'range': [0, 40]},
|
1033 |
+
lonaxis={'range': [100, 180]},
|
1034 |
+
center={'lat': 20, 'lon': 140},
|
1035 |
+
),
|
1036 |
+
legend_title='Clusters'
|
1037 |
)
|
1038 |
|
1039 |
+
return fig_routes, equations_output
|
1040 |
+
except Exception as e:
|
1041 |
+
error_fig = go.Figure()
|
1042 |
+
error_fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
1043 |
+
return error_fig, f"Error in cluster analysis: {str(e)}"
|
1044 |
+
|
1045 |
+
# Function to perform logistic regression
|
1046 |
+
def perform_logistic_regression(start_year, start_month, end_year, end_month, regression_type):
|
1047 |
+
start_date = datetime(int(start_year), int(start_month), 1)
|
1048 |
+
end_date = datetime(int(end_year), int(end_month), 28)
|
1049 |
+
|
1050 |
+
try:
|
1051 |
+
filtered_data = merged_data[
|
1052 |
+
(merged_data['ISO_TIME'] >= start_date) &
|
1053 |
+
(merged_data['ISO_TIME'] <= end_date)
|
1054 |
+
]
|
1055 |
|
1056 |
+
if regression_type == "Wind Speed":
|
1057 |
+
filtered_data['severe_typhoon'] = (filtered_data['USA_WIND'] >= 64).astype(int) # 64 knots threshold for severe typhoons
|
1058 |
+
X = sm.add_constant(filtered_data['ONI'])
|
1059 |
+
y = filtered_data['severe_typhoon']
|
1060 |
+
model = sm.Logit(y, X).fit()
|
1061 |
|
1062 |
+
beta_1 = model.params['ONI']
|
1063 |
+
exp_beta_1 = np.exp(beta_1)
|
1064 |
+
p_value = model.pvalues['ONI']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1065 |
|
1066 |
+
el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5]
|
1067 |
+
la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5]
|
1068 |
+
neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1069 |
|
1070 |
+
el_nino_severe = el_nino_data['severe_typhoon'].mean() if not el_nino_data.empty else 0
|
1071 |
+
la_nina_severe = la_nina_data['severe_typhoon'].mean() if not la_nina_data.empty else 0
|
1072 |
+
neutral_severe = neutral_data['severe_typhoon'].mean() if not neutral_data.empty else 0
|
1073 |
+
|
1074 |
+
result = f"""
|
1075 |
+
# Wind Speed Logistic Regression Results
|
1076 |
+
|
1077 |
+
β1 (ONI coefficient): {beta_1:.4f}
|
1078 |
+
exp(β1) (Odds Ratio): {exp_beta_1:.4f}
|
1079 |
+
P-value: {p_value:.4f}
|
1080 |
+
|
1081 |
+
Interpretation:
|
1082 |
+
- For each unit increase in ONI, the odds of a severe typhoon are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}.
|
1083 |
+
- This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level.
|
1084 |
+
|
1085 |
+
Proportion of severe typhoons:
|
1086 |
+
- El Niño conditions: {el_nino_severe:.2%}
|
1087 |
+
- La Niña conditions: {la_nina_severe:.2%}
|
1088 |
+
- Neutral conditions: {neutral_severe:.2%}
|
1089 |
+
"""
|
1090 |
+
|
1091 |
+
elif regression_type == "Pressure":
|
1092 |
+
filtered_data['intense_typhoon'] = (filtered_data['USA_PRES'] <= 950).astype(int) # 950 hPa threshold for intense typhoons
|
1093 |
+
X = sm.add_constant(filtered_data['ONI'])
|
1094 |
+
y = filtered_data['intense_typhoon']
|
1095 |
+
model = sm.Logit(y, X).fit()
|
1096 |
+
|
1097 |
+
beta_1 = model.params['ONI']
|
1098 |
+
exp_beta_1 = np.exp(beta_1)
|
1099 |
+
p_value = model.pvalues['ONI']
|
1100 |
+
|
1101 |
+
el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5]
|
1102 |
+
la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5]
|
1103 |
+
neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]
|
1104 |
+
|
1105 |
+
el_nino_intense = el_nino_data['intense_typhoon'].mean() if not el_nino_data.empty else 0
|
1106 |
+
la_nina_intense = la_nina_data['intense_typhoon'].mean() if not la_nina_data.empty else 0
|
1107 |
+
neutral_intense = neutral_data['intense_typhoon'].mean() if not neutral_data.empty else 0
|
1108 |
+
|
1109 |
+
result = f"""
|
1110 |
+
# Pressure Logistic Regression Results
|
1111 |
+
|
1112 |
+
β1 (ONI coefficient): {beta_1:.4f}
|
1113 |
+
exp(β1) (Odds Ratio): {exp_beta_1:.4f}
|
1114 |
+
P-value: {p_value:.4f}
|
1115 |
+
|
1116 |
+
Interpretation:
|
1117 |
+
- For each unit increase in ONI, the odds of an intense typhoon (pressure <= 950 hPa) are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}.
|
1118 |
+
- This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level.
|
1119 |
+
|
1120 |
+
Proportion of intense typhoons:
|
1121 |
+
- El Niño conditions: {el_nino_intense:.2%}
|
1122 |
+
- La Niña conditions: {la_nina_intense:.2%}
|
1123 |
+
- Neutral conditions: {neutral_intense:.2%}
|
1124 |
+
"""
|
1125 |
+
|
1126 |
+
elif regression_type == "Longitude":
|
1127 |
+
filtered_data = filtered_data.dropna(subset=['LON'])
|
1128 |
+
|
1129 |
+
if len(filtered_data) == 0:
|
1130 |
+
return "Insufficient data for longitude analysis"
|
1131 |
+
|
1132 |
+
filtered_data['western_typhoon'] = (filtered_data['LON'] <= 140).astype(int) # 140°E as threshold for western typhoons
|
1133 |
+
X = sm.add_constant(filtered_data['ONI'])
|
1134 |
+
y = filtered_data['western_typhoon']
|
1135 |
+
model = sm.Logit(y, X).fit()
|
1136 |
+
|
1137 |
+
beta_1 = model.params['ONI']
|
1138 |
+
exp_beta_1 = np.exp(beta_1)
|
1139 |
+
p_value = model.pvalues['ONI']
|
1140 |
+
|
1141 |
+
el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5]
|
1142 |
+
la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5]
|
1143 |
+
neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]
|
1144 |
+
|
1145 |
+
el_nino_western = el_nino_data['western_typhoon'].mean() if not el_nino_data.empty else 0
|
1146 |
+
la_nina_western = la_nina_data['western_typhoon'].mean() if not la_nina_data.empty else 0
|
1147 |
+
neutral_western = neutral_data['western_typhoon'].mean() if not neutral_data.empty else 0
|
1148 |
+
|
1149 |
+
result = f"""
|
1150 |
+
# Longitude Logistic Regression Results
|
1151 |
+
|
1152 |
+
β1 (ONI coefficient): {beta_1:.4f}
|
1153 |
+
exp(β1) (Odds Ratio): {exp_beta_1:.4f}
|
1154 |
+
P-value: {p_value:.4f}
|
1155 |
+
|
1156 |
+
Interpretation:
|
1157 |
+
- For each unit increase in ONI, the odds of a typhoon forming west of 140°E are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}.
|
1158 |
+
- This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level.
|
1159 |
+
|
1160 |
+
Proportion of typhoons forming west of 140°E:
|
1161 |
+
- El Niño conditions: {el_nino_western:.2%}
|
1162 |
+
- La Niña conditions: {la_nina_western:.2%}
|
1163 |
+
- Neutral conditions: {neutral_western:.2%}
|
1164 |
+
"""
|
1165 |
+
|
1166 |
+
return result
|
1167 |
+
except Exception as e:
|
1168 |
+
return f"Error performing logistic regression: {str(e)}"
|
1169 |
|
1170 |
+
# Define Gradio interface
|
1171 |
def create_interface():
|
1172 |
+
# Initialize data first
|
1173 |
+
initialize_data()
|
1174 |
+
|
1175 |
+
# Define interface tabs
|
1176 |
+
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
1177 |
gr.Markdown("# Typhoon Analysis Dashboard")
|
1178 |
|
1179 |
+
with gr.Tab("Typhoon Tracks Analysis"):
|
1180 |
+
with gr.Row():
|
1181 |
+
with gr.Column():
|
1182 |
+
start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1)
|
1183 |
+
start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1)
|
1184 |
+
with gr.Column():
|
1185 |
+
end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1)
|
1186 |
+
end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1)
|
1187 |
+
|
1188 |
+
enso_dropdown = gr.Dropdown(
|
1189 |
+
choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"],
|
1190 |
+
value="All Years",
|
1191 |
+
label="ENSO Phase"
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
typhoon_search = gr.Textbox(label="Search Typhoon Name")
|
1195 |
+
|
1196 |
+
analyze_button = gr.Button("Analyze Tracks")
|
1197 |
+
|
1198 |
+
with gr.Row():
|
1199 |
+
tracks_plot = gr.Plot(label="Typhoon Tracks")
|
1200 |
+
stats_text = gr.Textbox(label="Statistics", lines=4)
|
1201 |
+
|
1202 |
+
with gr.Row():
|
1203 |
+
wind_plot = gr.Plot(label="Wind Speed vs ONI")
|
1204 |
+
pressure_plot = gr.Plot(label="Pressure vs ONI")
|
1205 |
+
|
1206 |
+
analyze_button.click(
|
1207 |
+
analyze_typhoon_tracks,
|
1208 |
+
inputs=[start_year, start_month, end_year, end_month, enso_dropdown, typhoon_search],
|
1209 |
+
outputs=[tracks_plot, wind_plot, pressure_plot, stats_text]
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
with gr.Tab("Clustering Analysis"):
|
1213 |
+
with gr.Row():
|
1214 |
+
with gr.Column():
|
1215 |
+
cluster_start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1)
|
1216 |
+
cluster_start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1)
|
1217 |
+
with gr.Column():
|
1218 |
+
cluster_end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1)
|
1219 |
+
cluster_end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1)
|
1220 |
+
|
1221 |
+
with gr.Row():
|
1222 |
+
n_clusters = gr.Number(value=5, label="Number of Clusters", minimum=1, maximum=20, step=1)
|
1223 |
+
cluster_enso_dropdown = gr.Dropdown(
|
1224 |
+
choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"],
|
1225 |
+
value="All Years",
|
1226 |
label="ENSO Phase"
|
1227 |
)
|
1228 |
+
|
1229 |
+
analysis_type = gr.Radio(
|
1230 |
+
choices=["Show Routes", "Show Clusters", "Fourier Series"],
|
1231 |
+
value="Show Clusters",
|
1232 |
+
label="Analysis Type"
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
cluster_button = gr.Button("Run Cluster Analysis")
|
1236 |
+
|
1237 |
+
cluster_plot = gr.Plot(label="Typhoon Routes Clustering")
|
1238 |
+
equation_text = gr.Textbox(label="Cluster Equations", lines=15)
|
1239 |
+
|
1240 |
+
cluster_button.click(
|
1241 |
+
run_cluster_analysis,
|
1242 |
+
inputs=[
|
1243 |
+
cluster_start_year, cluster_start_month, cluster_end_year,
|
1244 |
+
cluster_end_month, n_clusters, cluster_enso_dropdown, analysis_type
|
1245 |
+
],
|
1246 |
+
outputs=[cluster_plot, equation_text]
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
with gr.Tab("Regression Analysis"):
|
1250 |
+
with gr.Row():
|
1251 |
+
with gr.Column():
|
1252 |
+
reg_start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1)
|
1253 |
+
reg_start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1)
|
1254 |
+
with gr.Column():
|
1255 |
+
reg_end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1)
|
1256 |
+
reg_end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1)
|
1257 |
+
|
1258 |
+
regression_type = gr.Radio(
|
1259 |
+
choices=["Wind Speed", "Pressure", "Longitude"],
|
1260 |
+
value="Wind Speed",
|
1261 |
+
label="Regression Type"
|
1262 |
+
)
|
1263 |
+
|
1264 |
+
regression_button = gr.Button("Perform Logistic Regression")
|
1265 |
+
|
1266 |
+
regression_results = gr.Textbox(label="Regression Results", lines=15)
|
1267 |
+
|
1268 |
+
regression_button.click(
|
1269 |
+
perform_logistic_regression,
|
1270 |
+
inputs=[reg_start_year, reg_start_month, reg_end_year, reg_end_month, regression_type],
|
1271 |
+
outputs=regression_results
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
with gr.Tab("Typhoon Path Animation"):
|
1275 |
+
with gr.Row():
|
1276 |
+
year_dropdown = gr.Dropdown(
|
1277 |
+
choices=[str(year) for year in range(1950, 2025)],
|
1278 |
+
value="2024",
|
1279 |
+
label="Year"
|
1280 |
+
)
|
1281 |
|
1282 |
+
typhoon_dropdown = gr.Dropdown(
|
1283 |
+
label="Typhoon",
|
1284 |
+
interactive=True
|
1285 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1286 |
|
1287 |
+
standard_dropdown = gr.Dropdown(
|
1288 |
+
choices=["atlantic", "taiwan"],
|
1289 |
+
value="atlantic",
|
1290 |
+
label="Classification Standard"
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
# Update typhoon dropdown when year changes
|
1294 |
+
year_dropdown.change(
|
1295 |
+
lambda year: (
|
1296 |
+
[{"label": name, "value": id} for name, id in get_typhoons_for_year(year)],
|
1297 |
+
get_typhoons_for_year(year)[0][1] if get_typhoons_for_year(year) else None
|
1298 |
+
),
|
1299 |
+
inputs=year_dropdown,
|
1300 |
+
outputs=[typhoon_dropdown, typhoon_dropdown]
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
animation_button = gr.Button("Generate Animation")
|
1304 |
+
|
1305 |
+
typhoon_animation = gr.Plot(label="Typhoon Path Animation")
|
1306 |
+
|
1307 |
+
animation_button.click(
|
1308 |
+
create_typhoon_path_animation,
|
1309 |
+
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
|
1310 |
+
outputs=typhoon_animation
|
1311 |
+
)
|
1312 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1313 |
return demo
|
1314 |
|
1315 |
+
# Run the app
|
1316 |
if __name__ == "__main__":
|
1317 |
+
# Schedule background tasks
|
1318 |
+
schedule.every().day.at("01:00").do(update_ibtracs_data)
|
1319 |
+
schedule.every().day.at("00:00").do(lambda: update_oni_data() if should_update_oni() else None)
|
1320 |
+
scheduler_thread = threading.Thread(target=run_schedule)
|
1321 |
+
scheduler_thread.daemon = True
|
1322 |
+
scheduler_thread.start()
|
1323 |
+
|
1324 |
+
# Create and launch the Gradio interface
|
1325 |
demo = create_interface()
|
1326 |
+
demo.launch(server_name="127.0.0.1", server_port=7860)
|
|
|
|
|
|
|
|