Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -107,8 +107,9 @@ class TyphoonAnalyzer:
|
|
107 |
raise
|
108 |
|
109 |
print("All required data files are ready")
|
110 |
-
|
111 |
def load_initial_data(self):
|
|
|
112 |
print("Loading initial data...")
|
113 |
self.update_oni_data()
|
114 |
self.oni_df = self.fetch_oni_data_from_csv()
|
@@ -120,261 +121,102 @@ class TyphoonAnalyzer:
|
|
120 |
self.merged_data = self.merge_data()
|
121 |
print("Initial data loading complete")
|
122 |
|
123 |
-
def fetch_oni_data_from_csv(self):
|
124 |
-
"""Load ONI data from CSV"""
|
125 |
-
df = pd.read_csv(ONI_DATA_PATH)
|
126 |
-
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
127 |
-
|
128 |
-
# Convert month numbers to month names
|
129 |
-
month_map = {
|
130 |
-
'01': 'Jan', '02': 'Feb', '03': 'Mar', '04': 'Apr',
|
131 |
-
'05': 'May', '06': 'Jun', '07': 'Jul', '08': 'Aug',
|
132 |
-
'09': 'Sep', '10': 'Oct', '11': 'Nov', '12': 'Dec'
|
133 |
-
}
|
134 |
-
df['Month'] = df['Month'].map(month_map)
|
135 |
-
|
136 |
-
# Now create the date
|
137 |
-
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
138 |
-
return df.set_index('Date')
|
139 |
-
|
140 |
-
def should_update_oni(self):
|
141 |
-
today = datetime.now()
|
142 |
-
return (today.day == 1 or today.day == 15 or
|
143 |
-
today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day)
|
144 |
def convert_typhoondata(self, input_file, output_file):
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
for row in reader:
|
156 |
-
if not row: # Skip blank lines
|
157 |
-
continue
|
158 |
-
|
159 |
-
sid = row[0]
|
160 |
-
iso_time = row[6]
|
161 |
-
sid_data[sid].append((row, iso_time))
|
162 |
-
|
163 |
-
with open(output_file, 'w', newline='') as outfile:
|
164 |
-
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME',
|
165 |
-
'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES',
|
166 |
-
'START_DATE', 'END_DATE']
|
167 |
-
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
168 |
-
writer.writeheader()
|
169 |
-
|
170 |
-
for sid, data in sid_data.items():
|
171 |
-
start_date = min(data, key=lambda x: x[1])[1]
|
172 |
-
end_date = max(data, key=lambda x: x[1])[1]
|
173 |
-
|
174 |
-
for row, iso_time in data:
|
175 |
-
writer.writerow({
|
176 |
-
'SID': row[0],
|
177 |
-
'ISO_TIME': iso_time,
|
178 |
-
'LAT': row[8],
|
179 |
-
'LON': row[9],
|
180 |
-
'SEASON': row[1],
|
181 |
-
'NAME': row[5],
|
182 |
-
'WMO_WIND': row[10].strip() or ' ',
|
183 |
-
'WMO_PRES': row[11].strip() or ' ',
|
184 |
-
'USA_WIND': row[23].strip() or ' ',
|
185 |
-
'USA_PRES': row[24].strip() or ' ',
|
186 |
-
'START_DATE': start_date,
|
187 |
-
'END_DATE': end_date
|
188 |
-
})
|
189 |
-
def update_oni_data(self):
|
190 |
-
if not self.should_update_oni():
|
191 |
-
return
|
192 |
-
|
193 |
-
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
194 |
-
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
195 |
-
|
196 |
-
try:
|
197 |
-
response = requests.get(url)
|
198 |
-
response.raise_for_status()
|
199 |
-
with open(temp_file, 'wb') as f:
|
200 |
-
f.write(response.content)
|
201 |
-
self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH)
|
202 |
-
self.last_oni_update = date.today()
|
203 |
-
except Exception as e:
|
204 |
-
print(f"Error updating ONI data: {e}")
|
205 |
-
finally:
|
206 |
-
if os.path.exists(temp_file):
|
207 |
-
os.remove(temp_file)
|
208 |
-
def create_wind_analysis(self, data):
|
209 |
-
"""Create wind speed analysis plot"""
|
210 |
-
fig = px.scatter(data,
|
211 |
-
x='ONI',
|
212 |
-
y='USA_WIND',
|
213 |
-
color='Category',
|
214 |
-
color_discrete_map=COLOR_MAP,
|
215 |
-
title='Wind Speed vs ONI Index',
|
216 |
-
labels={
|
217 |
-
'ONI': 'Oceanic Niño Index',
|
218 |
-
'USA_WIND': 'Maximum Wind Speed (kt)'
|
219 |
-
},
|
220 |
-
hover_data=['NAME', 'ISO_TIME', 'Category']
|
221 |
-
)
|
222 |
-
|
223 |
-
# Add regression line
|
224 |
-
x = data['ONI']
|
225 |
-
y = data['USA_WIND']
|
226 |
-
slope, intercept = np.polyfit(x, y, 1)
|
227 |
-
fig.add_trace(
|
228 |
-
go.Scatter(
|
229 |
-
x=x,
|
230 |
-
y=slope * x + intercept,
|
231 |
-
mode='lines',
|
232 |
-
name=f'Regression (slope={slope:.2f})',
|
233 |
-
line=dict(color='black', dash='dash')
|
234 |
-
)
|
235 |
-
)
|
236 |
-
|
237 |
-
return fig
|
238 |
-
def create_typhoon_animation(self, year, typhoon_id):
|
239 |
-
"""Create animated visualization of typhoon path"""
|
240 |
-
# Create default empty figure
|
241 |
-
empty_fig = go.Figure()
|
242 |
-
empty_fig.update_layout(
|
243 |
-
title="No Data Available",
|
244 |
-
showlegend=False,
|
245 |
-
geo=dict(
|
246 |
-
projection_type='mercator',
|
247 |
-
showland=True,
|
248 |
-
showcoastlines=True,
|
249 |
-
landcolor='rgb(243, 243, 243)',
|
250 |
-
countrycolor='rgb(204, 204, 204)',
|
251 |
-
coastlinecolor='rgb(214, 214, 214)',
|
252 |
-
showocean=True,
|
253 |
-
oceancolor='rgb(230, 250, 255)',
|
254 |
-
lataxis=dict(range=[0, 50]),
|
255 |
-
lonaxis=dict(range=[100, 180]),
|
256 |
-
center=dict(lat=20, lon=140)
|
257 |
-
)
|
258 |
-
)
|
259 |
-
|
260 |
-
# Input validation
|
261 |
-
if not typhoon_id:
|
262 |
-
return empty_fig, "Please select a typhoon"
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
#
|
275 |
-
|
276 |
-
|
277 |
-
showlegend=True,
|
278 |
-
geo=dict(
|
279 |
-
projection_type='mercator',
|
280 |
-
showland=True,
|
281 |
-
showcoastlines=True,
|
282 |
-
landcolor='rgb(243, 243, 243)',
|
283 |
-
countrycolor='rgb(204, 204, 204)',
|
284 |
-
coastlinecolor='rgb(214, 214, 214)',
|
285 |
-
showocean=True,
|
286 |
-
oceancolor='rgb(230, 250, 255)',
|
287 |
-
lataxis=dict(range=[0, 50]),
|
288 |
-
lonaxis=dict(range=[100, 180]),
|
289 |
-
center=dict(lat=20, lon=140)
|
290 |
-
)
|
291 |
-
)
|
292 |
-
|
293 |
-
# Create animation frames
|
294 |
-
frames = []
|
295 |
-
for i in range(len(storm_data)):
|
296 |
-
frame = go.Frame(
|
297 |
-
data=[
|
298 |
-
go.Scattergeo(
|
299 |
-
lon=storm_data['LON'].iloc[:i+1],
|
300 |
-
lat=storm_data['LAT'].iloc[:i+1],
|
301 |
-
mode='lines+markers',
|
302 |
-
line=dict(width=2, color='red'),
|
303 |
-
marker=dict(size=8, color='red'),
|
304 |
-
name='Path',
|
305 |
-
hovertemplate=(
|
306 |
-
f"Time: {storm_data['ISO_TIME'].iloc[i]:%Y-%m-%d %H:%M}<br>" +
|
307 |
-
f"Wind: {storm_data['USA_WIND'].iloc[i]:.1f} kt<br>" +
|
308 |
-
f"Pressure: {storm_data['WMO_PRES'].iloc[i]:.1f} hPa<br>" +
|
309 |
-
f"Lat: {storm_data['LAT'].iloc[i]:.2f}°N<br>" +
|
310 |
-
f"Lon: {storm_data['LON'].iloc[i]:.2f}°E"
|
311 |
-
)
|
312 |
-
)
|
313 |
-
],
|
314 |
-
name=f'frame{i}'
|
315 |
-
)
|
316 |
-
frames.append(frame)
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
}
|
337 |
-
],
|
338 |
-
'type': 'buttons',
|
339 |
-
'showactive': False,
|
340 |
-
'x': 0.1,
|
341 |
-
'y': 0,
|
342 |
-
'xanchor': 'right',
|
343 |
-
'yanchor': 'top'
|
344 |
-
}]
|
345 |
-
)
|
346 |
-
|
347 |
-
# Add initial data
|
348 |
-
fig.add_trace(
|
349 |
-
go.Scattergeo(
|
350 |
-
lon=[storm_data['LON'].iloc[0]],
|
351 |
-
lat=[storm_data['LAT'].iloc[0]],
|
352 |
-
mode='markers',
|
353 |
-
marker=dict(size=8, color='red'),
|
354 |
-
name='Start Point',
|
355 |
-
showlegend=True
|
356 |
-
)
|
357 |
-
)
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
- Maximum Wind Speed: {storm_data['USA_WIND'].max():.1f} kt
|
365 |
-
- Minimum Pressure: {storm_data['WMO_PRES'].min():.1f} hPa
|
366 |
-
- Duration: {(storm_data['ISO_TIME'].iloc[-1] - storm_data['ISO_TIME'].iloc[0]).total_seconds() / 3600:.1f} hours
|
367 |
-
"""
|
368 |
|
369 |
-
return fig, info_text
|
370 |
-
|
371 |
def convert_oni_ascii_to_csv(self, input_file, output_file):
|
|
|
372 |
data = defaultdict(lambda: [''] * 12)
|
373 |
season_to_month = {
|
374 |
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
375 |
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
376 |
}
|
377 |
-
|
378 |
with open(input_file, 'r') as f:
|
379 |
next(f) # Skip header
|
380 |
for line in f:
|
@@ -394,6 +236,7 @@ class TyphoonAnalyzer:
|
|
394 |
writer.writerow([year] + data[year])
|
395 |
|
396 |
def load_ibtracs_data(self):
|
|
|
397 |
if os.path.exists(CACHE_FILE):
|
398 |
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
399 |
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
@@ -402,24 +245,25 @@ class TyphoonAnalyzer:
|
|
402 |
|
403 |
if os.path.exists(LOCAL_iBtrace_PATH):
|
404 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
|
405 |
-
|
406 |
else:
|
407 |
response = requests.get(iBtrace_uri)
|
408 |
response.raise_for_status()
|
409 |
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
410 |
f.write(response.text)
|
411 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
|
412 |
-
|
413 |
|
414 |
with open(CACHE_FILE, 'wb') as f:
|
415 |
pickle.dump(ibtracs, f)
|
416 |
return ibtracs
|
417 |
|
418 |
def update_typhoon_data(self):
|
|
|
419 |
try:
|
420 |
response = requests.head(iBtrace_uri)
|
421 |
remote_modified = datetime.strptime(response.headers['Last-Modified'],
|
422 |
-
|
423 |
local_modified = (datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
|
424 |
if os.path.exists(LOCAL_iBtrace_PATH) else datetime.min)
|
425 |
|
@@ -428,10 +272,12 @@ class TyphoonAnalyzer:
|
|
428 |
response.raise_for_status()
|
429 |
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
430 |
f.write(response.text)
|
|
|
431 |
except Exception as e:
|
432 |
print(f"Error updating typhoon data: {e}")
|
433 |
|
434 |
def load_data(self):
|
|
|
435 |
oni_data = pd.read_csv(ONI_DATA_PATH)
|
436 |
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
|
437 |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
@@ -439,7 +285,7 @@ class TyphoonAnalyzer:
|
|
439 |
|
440 |
def process_oni_data(self, oni_data):
|
441 |
"""Process ONI data"""
|
442 |
-
oni_long =
|
443 |
|
444 |
# Create a mapping for month numbers
|
445 |
month_map = {
|
@@ -454,6 +300,7 @@ class TyphoonAnalyzer:
|
|
454 |
return oni_long
|
455 |
|
456 |
def process_typhoon_data(self, typhoon_data):
|
|
|
457 |
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
458 |
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
459 |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
@@ -473,9 +320,13 @@ class TyphoonAnalyzer:
|
|
473 |
return typhoon_max
|
474 |
|
475 |
def merge_data(self):
|
|
|
476 |
return pd.merge(self.typhoon_max, self.oni_long, on=['Year', 'Month'])
|
477 |
|
478 |
def categorize_typhoon(self, wind_speed):
|
|
|
|
|
|
|
479 |
if wind_speed >= 137:
|
480 |
return 'C5 Super Typhoon'
|
481 |
elif wind_speed >= 113:
|
@@ -492,6 +343,7 @@ class TyphoonAnalyzer:
|
|
492 |
return 'Tropical Depression'
|
493 |
|
494 |
def analyze_typhoon(self, start_year, start_month, end_year, end_month, enso_value='all'):
|
|
|
495 |
start_date = datetime(start_year, start_month, 1)
|
496 |
end_date = datetime(end_year, end_month, 28)
|
497 |
|
@@ -511,7 +363,6 @@ class TyphoonAnalyzer:
|
|
511 |
'tracks': self.create_tracks_plot(filtered_data),
|
512 |
'wind': self.create_wind_analysis(filtered_data),
|
513 |
'pressure': self.create_pressure_analysis(filtered_data),
|
514 |
-
'clusters': self.create_cluster_analysis(filtered_data, 5),
|
515 |
'stats': self.generate_statistics(filtered_data)
|
516 |
}
|
517 |
|
@@ -586,6 +437,96 @@ class TyphoonAnalyzer:
|
|
586 |
|
587 |
return fig
|
588 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
def analyze_clusters(self, year, n_clusters):
|
590 |
"""Analyze typhoon clusters for a specific year"""
|
591 |
year_data = self.typhoon_data[self.typhoon_data['SEASON'] == year]
|
@@ -669,369 +610,321 @@ class TyphoonAnalyzer:
|
|
669 |
stats_text += f"- Cluster {i+1}: {cluster_counts[i]} typhoons\n"
|
670 |
|
671 |
return fig, stats_text
|
|
|
672 |
def get_typhoons_for_year(self, year):
|
673 |
"""Get list of typhoons for a specific year"""
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
|
679 |
-
def create_typhoon_animation(self, year,
|
680 |
"""Create animated visualization of typhoon path"""
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
|
|
|
|
|
|
|
|
|
|
686 |
geo=dict(
|
687 |
-
projection_type='
|
688 |
showland=True,
|
689 |
-
showcoastlines=True,
|
690 |
landcolor='rgb(243, 243, 243)',
|
691 |
countrycolor='rgb(204, 204, 204)',
|
692 |
-
coastlinecolor='rgb(
|
693 |
showocean=True,
|
694 |
oceancolor='rgb(230, 250, 255)',
|
695 |
lataxis=dict(range=[0, 50]),
|
696 |
lonaxis=dict(range=[100, 180]),
|
697 |
-
center=dict(lat=20, lon=140)
|
698 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
699 |
)
|
700 |
|
701 |
-
#
|
702 |
-
|
703 |
-
|
|
|
704 |
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
|
|
|
|
|
|
|
|
710 |
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
storm_name = storm_data['NAME'].values[0] if len(storm_data) > 0 else "Unknown"
|
715 |
-
|
716 |
-
fig = go.Figure()
|
717 |
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
mode='lines+markers',
|
746 |
-
line=dict(width=2, color='red'),
|
747 |
-
marker=dict(size=8, color='red'),
|
748 |
-
name='Path',
|
749 |
-
hovertemplate=(
|
750 |
-
f"Time: {pd.to_datetime(storm_data['ISO_TIME'].values[i]).strftime('%Y-%m-%d %H:%M')}<br>" +
|
751 |
-
f"Wind: {storm_data['USA_WIND'].values[i]:.1f} kt<br>" +
|
752 |
-
f"Pressure: {storm_data['WMO_PRES'].values[i]:.1f} hPa<br>" +
|
753 |
-
f"Lat: {storm_data['LAT'].values[i]:.2f}°N<br>" +
|
754 |
-
f"Lon: {storm_data['LON'].values[i]:.2f}°E"
|
755 |
-
)
|
756 |
-
)
|
757 |
-
],
|
758 |
-
name=f'frame{i}'
|
759 |
-
)
|
760 |
-
frames.append(frame)
|
761 |
-
|
762 |
-
fig.frames = frames
|
763 |
-
|
764 |
-
# Add animation controls
|
765 |
-
fig.update_layout(
|
766 |
-
updatemenus=[{
|
767 |
-
'buttons': [
|
768 |
-
{
|
769 |
-
'args': [None, {'frame': {'duration': 100, 'redraw': True},
|
770 |
-
'fromcurrent': True}],
|
771 |
-
'label': 'Play',
|
772 |
-
'method': 'animate'
|
773 |
-
},
|
774 |
-
{
|
775 |
-
'args': [[None], {'frame': {'duration': 0, 'redraw': True},
|
776 |
-
'mode': 'immediate',
|
777 |
-
'transition': {'duration': 0}}],
|
778 |
-
'label': 'Pause',
|
779 |
-
'method': 'animate'
|
780 |
-
}
|
781 |
-
],
|
782 |
-
'type': 'buttons',
|
783 |
-
'showactive': False,
|
784 |
-
'x': 0.1,
|
785 |
-
'y': 0,
|
786 |
-
'xanchor': 'right',
|
787 |
-
'yanchor': 'top'
|
788 |
-
}]
|
789 |
-
)
|
790 |
-
|
791 |
-
# Add initial data
|
792 |
-
fig.add_trace(
|
793 |
-
go.Scattergeo(
|
794 |
-
lon=[storm_data['LON'].values[0]],
|
795 |
-
lat=[storm_data['LAT'].values[0]],
|
796 |
-
mode='markers',
|
797 |
-
marker=dict(size=8, color='red'),
|
798 |
-
name='Start Point',
|
799 |
-
showlegend=True
|
800 |
-
)
|
801 |
)
|
|
|
802 |
|
803 |
-
|
804 |
-
end_time = pd.to_datetime(storm_data['ISO_TIME'].values[-1])
|
805 |
-
duration = (end_time - start_time).total_seconds() / 3600
|
806 |
-
|
807 |
-
info_text = f"""
|
808 |
-
### Typhoon Information
|
809 |
-
- Name: {storm_name}
|
810 |
-
- Start Date: {start_time.strftime('%Y-%m-%d %H:%M')}
|
811 |
-
- End Date: {end_time.strftime('%Y-%m-%d %H:%M')}
|
812 |
-
- Maximum Wind Speed: {storm_data['USA_WIND'].max():.1f} kt
|
813 |
-
- Minimum Pressure: {storm_data['WMO_PRES'].min():.1f} hPa
|
814 |
-
- Duration: {duration:.1f} hours
|
815 |
-
"""
|
816 |
-
|
817 |
-
return fig, info_text
|
818 |
-
|
819 |
-
except Exception as e:
|
820 |
-
print(f"Error in create_typhoon_animation: {str(e)}")
|
821 |
-
return empty_fig, f"Error processing typhoon data: {str(e)}"
|
822 |
-
|
823 |
-
return fig, info_text
|
824 |
-
def create_pressure_analysis(self, data):
|
825 |
-
fig = px.scatter(data,
|
826 |
-
x='ONI',
|
827 |
-
y='WMO_PRES',
|
828 |
-
color='Category',
|
829 |
-
color_discrete_map=COLOR_MAP,
|
830 |
-
title='Pressure vs ONI Index',
|
831 |
-
labels={
|
832 |
-
'ONI': 'Oceanic Niño Index',
|
833 |
-
'WMO_PRES': 'Minimum Pressure (hPa)'
|
834 |
-
},
|
835 |
-
hover_data=['NAME', 'ISO_TIME']
|
836 |
-
)
|
837 |
|
838 |
-
# Add
|
839 |
-
x = data['ONI']
|
840 |
-
y = data['WMO_PRES']
|
841 |
-
slope, intercept = np.polyfit(x, y, 1)
|
842 |
fig.add_trace(
|
843 |
-
go.
|
844 |
-
|
845 |
-
|
846 |
mode='lines',
|
847 |
-
|
848 |
-
|
|
|
849 |
)
|
850 |
)
|
851 |
-
|
852 |
-
return fig
|
853 |
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
if not routes:
|
867 |
-
return go.Figure()
|
868 |
-
|
869 |
-
# Perform clustering
|
870 |
-
routes_array = np.array(routes)
|
871 |
-
routes_reshaped = routes_array.reshape(routes_array.shape[0], -1)
|
872 |
-
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
|
873 |
-
clusters = kmeans.fit_predict(routes_reshaped)
|
874 |
|
875 |
-
#
|
876 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
877 |
|
878 |
-
|
879 |
-
for route, cluster_id in zip(routes, clusters):
|
880 |
-
fig.add_trace(go.Scattergeo(
|
881 |
-
lon=route[:, 0],
|
882 |
-
lat=route[:, 1],
|
883 |
-
mode='lines',
|
884 |
-
line=dict(width=1, color=f'hsl({cluster_id * 360/n_clusters}, 50%, 50%)'),
|
885 |
-
showlegend=False
|
886 |
-
))
|
887 |
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
|
899 |
-
fig
|
900 |
-
title='Typhoon Route Clusters',
|
901 |
-
showlegend=True,
|
902 |
-
geo=dict(
|
903 |
-
projection_type='mercator',
|
904 |
-
showland=True,
|
905 |
-
showcoastlines=True,
|
906 |
-
landcolor='rgb(243, 243, 243)',
|
907 |
-
countrycolor='rgb(204, 204, 204)',
|
908 |
-
coastlinecolor='rgb(214, 214, 214)',
|
909 |
-
lataxis=dict(range=[0, 50]),
|
910 |
-
lonaxis=dict(range=[100, 180]),
|
911 |
-
)
|
912 |
-
)
|
913 |
-
|
914 |
-
return fig
|
915 |
-
def get_typhoons_for_year(self, year):
|
916 |
-
"""Get list of typhoons for a specific year"""
|
917 |
-
year_data = self.typhoon_data[self.typhoon_data['SEASON'] == year]
|
918 |
-
unique_typhoons = year_data.groupby('SID').first().reset_index()
|
919 |
-
return [
|
920 |
-
{'label': f"{row['NAME']} ({row['ISO_TIME'].strftime('%Y-%m-%d')})",
|
921 |
-
'value': row['SID']}
|
922 |
-
for _, row in unique_typhoons.iterrows()
|
923 |
-
]
|
924 |
|
925 |
-
def
|
926 |
-
"""
|
927 |
-
if not
|
928 |
-
return
|
929 |
-
|
930 |
-
storm_data = self.typhoon_data[self.typhoon_data['SID'] == typhoon_id]
|
931 |
-
storm_data = storm_data.sort_values('ISO_TIME')
|
932 |
|
933 |
-
#
|
934 |
-
|
935 |
|
936 |
-
#
|
937 |
-
|
|
|
938 |
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
943 |
fig = go.Figure()
|
944 |
|
945 |
fig.update_layout(
|
946 |
-
title=f"
|
947 |
-
showlegend=True,
|
948 |
geo=dict(
|
949 |
-
projection_type='
|
950 |
showland=True,
|
951 |
-
showcoastlines=True,
|
952 |
landcolor='rgb(243, 243, 243)',
|
953 |
countrycolor='rgb(204, 204, 204)',
|
954 |
-
coastlinecolor='rgb(
|
955 |
showocean=True,
|
956 |
oceancolor='rgb(230, 250, 255)',
|
957 |
lataxis=dict(range=[0, 50]),
|
958 |
lonaxis=dict(range=[100, 180]),
|
959 |
-
center=dict(lat=20, lon=140)
|
960 |
)
|
961 |
)
|
962 |
|
963 |
-
#
|
964 |
-
|
965 |
-
lon=storm_data['LON'],
|
966 |
-
lat=storm_data['LAT'],
|
967 |
-
mode='lines+markers',
|
968 |
-
line=dict(width=2, color='red'),
|
969 |
-
marker=dict(
|
970 |
-
size=8,
|
971 |
-
color=storm_data['USA_WIND'],
|
972 |
-
colorscale='Viridis',
|
973 |
-
showscale=True,
|
974 |
-
colorbar=dict(title='Wind Speed (kt)')
|
975 |
-
),
|
976 |
-
text=[f"Time: {time:%Y-%m-%d %H:%M}<br>Wind: {wind:.1f} kt<br>Pressure: {pres:.1f} hPa"
|
977 |
-
for time, wind, pres in zip(storm_data['ISO_TIME'],
|
978 |
-
storm_data['USA_WIND'],
|
979 |
-
storm_data['WMO_PRES'])],
|
980 |
-
hoverinfo='text'
|
981 |
-
))
|
982 |
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
993 |
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
998 |
|
999 |
-
|
1000 |
-
|
1001 |
-
- Minimum Pressure: {min_pressure:.1f} hPa
|
1002 |
-
- Maximum Category: {self.categorize_typhoon(max_wind)}
|
1003 |
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
stats = {
|
1011 |
-
'total_typhoons': len(data['SID'].unique()),
|
1012 |
-
'avg_wind': data['USA_WIND'].mean(),
|
1013 |
-
'max_wind': data['USA_WIND'].max(),
|
1014 |
-
'avg_pressure': data['WMO_PRES'].mean(),
|
1015 |
-
'min_pressure': data['WMO_PRES'].min(),
|
1016 |
-
'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']),
|
1017 |
-
'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']),
|
1018 |
-
'category_counts': data['Category'].value_counts().to_dict()
|
1019 |
-
}
|
1020 |
|
1021 |
-
return
|
1022 |
-
### Statistical Summary
|
1023 |
-
|
1024 |
-
- Total Typhoons: {stats['total_typhoons']}
|
1025 |
-
- Average Wind Speed: {stats['avg_wind']:.2f} kt
|
1026 |
-
- Maximum Wind Speed: {stats['max_wind']:.2f} kt
|
1027 |
-
- Average Pressure: {stats['avg_pressure']:.2f} hPa
|
1028 |
-
- Minimum Pressure: {stats['min_pressure']:.2f} hPa
|
1029 |
-
- ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f}
|
1030 |
-
- ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f}
|
1031 |
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1035 |
|
1036 |
def create_interface():
|
1037 |
analyzer = TyphoonAnalyzer()
|
@@ -1058,31 +951,21 @@ def create_interface():
|
|
1058 |
|
1059 |
analyze_btn = gr.Button("Analyze")
|
1060 |
|
1061 |
-
|
1062 |
-
tracks_plot = gr.Plot()
|
1063 |
-
with gr.Row():
|
1064 |
-
wind_plot = gr.Plot()
|
1065 |
-
pressure_plot = gr.Plot()
|
1066 |
|
1067 |
-
stats_text = gr.Markdown()
|
1068 |
-
|
1069 |
-
# Clustering Analysis Tab
|
1070 |
-
with gr.Tab("Clustering Analysis"):
|
1071 |
with gr.Row():
|
1072 |
-
|
1073 |
-
|
1074 |
|
1075 |
-
|
1076 |
-
cluster_plot = gr.Plot()
|
1077 |
-
cluster_stats = gr.Markdown()
|
1078 |
|
1079 |
-
# Animation Tab
|
1080 |
with gr.Tab("Typhoon Animation"):
|
1081 |
with gr.Row():
|
1082 |
animation_year = gr.Slider(
|
1083 |
-
minimum=
|
1084 |
-
maximum=2024,
|
1085 |
-
value=
|
1086 |
step=1,
|
1087 |
label="Select Year"
|
1088 |
)
|
@@ -1093,31 +976,27 @@ def create_interface():
|
|
1093 |
label="Select Typhoon",
|
1094 |
interactive=True
|
1095 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1096 |
|
1097 |
-
animation_btn = gr.Button("
|
1098 |
-
animation_plot = gr.Plot()
|
1099 |
animation_info = gr.Markdown()
|
1100 |
|
1101 |
# Search Tab
|
1102 |
with gr.Tab("Typhoon Search"):
|
1103 |
with gr.Row():
|
1104 |
-
|
1105 |
-
|
1106 |
-
maximum=2024,
|
1107 |
-
value=2024,
|
1108 |
-
step=1,
|
1109 |
-
label="Select Year"
|
1110 |
-
)
|
1111 |
-
|
1112 |
-
with gr.Row():
|
1113 |
-
search_typhoon = gr.Dropdown(
|
1114 |
-
choices=[],
|
1115 |
-
label="Select Typhoon",
|
1116 |
-
interactive=True
|
1117 |
-
)
|
1118 |
|
1119 |
-
|
1120 |
-
search_plot = gr.Plot()
|
1121 |
search_info = gr.Markdown()
|
1122 |
|
1123 |
# Event handlers
|
@@ -1130,9 +1009,6 @@ def create_interface():
|
|
1130 |
results['stats']
|
1131 |
]
|
1132 |
|
1133 |
-
def cluster_callback(year, n_clusters):
|
1134 |
-
return analyzer.analyze_clusters(year, n_clusters)
|
1135 |
-
|
1136 |
def update_typhoon_choices(year):
|
1137 |
typhoons = analyzer.get_typhoons_for_year(year)
|
1138 |
return gr.update(choices=typhoons, value=None)
|
@@ -1144,13 +1020,6 @@ def create_interface():
|
|
1144 |
outputs=[tracks_plot, wind_plot, pressure_plot, stats_text]
|
1145 |
)
|
1146 |
|
1147 |
-
# Connect events for clustering
|
1148 |
-
cluster_btn.click(
|
1149 |
-
cluster_callback,
|
1150 |
-
inputs=[cluster_year, n_clusters],
|
1151 |
-
outputs=[cluster_plot, cluster_stats]
|
1152 |
-
)
|
1153 |
-
|
1154 |
# Connect events for Animation tab
|
1155 |
animation_year.change(
|
1156 |
update_typhoon_choices,
|
@@ -1160,21 +1029,15 @@ def create_interface():
|
|
1160 |
|
1161 |
animation_btn.click(
|
1162 |
analyzer.create_typhoon_animation,
|
1163 |
-
inputs=[animation_year, animation_typhoon],
|
1164 |
outputs=[animation_plot, animation_info]
|
1165 |
)
|
1166 |
|
1167 |
# Connect events for Search tab
|
1168 |
-
search_year.change(
|
1169 |
-
update_typhoon_choices,
|
1170 |
-
inputs=[search_year],
|
1171 |
-
outputs=[search_typhoon]
|
1172 |
-
)
|
1173 |
-
|
1174 |
search_btn.click(
|
1175 |
-
analyzer.
|
1176 |
-
inputs=[
|
1177 |
-
outputs=[
|
1178 |
)
|
1179 |
|
1180 |
return demo
|
|
|
107 |
raise
|
108 |
|
109 |
print("All required data files are ready")
|
110 |
+
|
111 |
def load_initial_data(self):
|
112 |
+
"""Initialize all required data"""
|
113 |
print("Loading initial data...")
|
114 |
self.update_oni_data()
|
115 |
self.oni_df = self.fetch_oni_data_from_csv()
|
|
|
121 |
self.merged_data = self.merge_data()
|
122 |
print("Initial data loading complete")
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
def convert_typhoondata(self, input_file, output_file):
|
125 |
+
"""Convert IBTrACS data to processed format"""
|
126 |
+
print(f"Converting typhoon data from {input_file} to {output_file}")
|
127 |
+
with open(input_file, 'r') as infile:
|
128 |
+
# Skip the header lines
|
129 |
+
next(infile)
|
130 |
+
next(infile)
|
131 |
+
|
132 |
+
reader = csv.reader(infile)
|
133 |
+
sid_data = defaultdict(list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
for row in reader:
|
136 |
+
if not row: # Skip blank lines
|
137 |
+
continue
|
138 |
+
|
139 |
+
sid = row[0]
|
140 |
+
iso_time = row[6]
|
141 |
+
sid_data[sid].append((row, iso_time))
|
142 |
+
|
143 |
+
with open(output_file, 'w', newline='') as outfile:
|
144 |
+
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME',
|
145 |
+
'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES',
|
146 |
+
'START_DATE', 'END_DATE']
|
147 |
+
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
148 |
+
writer.writeheader()
|
149 |
|
150 |
+
for sid, data in sid_data.items():
|
151 |
+
start_date = min(data, key=lambda x: x[1])[1]
|
152 |
+
end_date = max(data, key=lambda x: x[1])[1]
|
153 |
+
|
154 |
+
for row, iso_time in data:
|
155 |
+
writer.writerow({
|
156 |
+
'SID': row[0],
|
157 |
+
'ISO_TIME': iso_time,
|
158 |
+
'LAT': row[8],
|
159 |
+
'LON': row[9],
|
160 |
+
'SEASON': row[1],
|
161 |
+
'NAME': row[5],
|
162 |
+
'WMO_WIND': row[10].strip() or ' ',
|
163 |
+
'WMO_PRES': row[11].strip() or ' ',
|
164 |
+
'USA_WIND': row[23].strip() or ' ',
|
165 |
+
'USA_PRES': row[24].strip() or ' ',
|
166 |
+
'START_DATE': start_date,
|
167 |
+
'END_DATE': end_date
|
168 |
+
})
|
169 |
+
|
170 |
+
def fetch_oni_data_from_csv(self):
|
171 |
+
"""Load ONI data from CSV"""
|
172 |
+
df = pd.read_csv(ONI_DATA_PATH)
|
173 |
+
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
174 |
|
175 |
+
# Convert month numbers to month names
|
176 |
+
month_map = {
|
177 |
+
'01': 'Jan', '02': 'Feb', '03': 'Mar', '04': 'Apr',
|
178 |
+
'05': 'May', '06': 'Jun', '07': 'Jul', '08': 'Aug',
|
179 |
+
'09': 'Sep', '10': 'Oct', '11': 'Nov', '12': 'Dec'
|
180 |
+
}
|
181 |
+
df['Month'] = df['Month'].map(month_map)
|
182 |
|
183 |
+
# Now create the date
|
184 |
+
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
185 |
+
return df.set_index('Date')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
def update_oni_data(self):
|
188 |
+
"""Update ONI data from NOAA"""
|
189 |
+
if not self._should_update_oni():
|
190 |
+
return
|
191 |
+
|
192 |
+
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
193 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
194 |
+
try:
|
195 |
+
response = requests.get(url)
|
196 |
+
response.raise_for_status()
|
197 |
+
temp_file.write(response.content)
|
198 |
+
self.convert_oni_ascii_to_csv(temp_file.name, ONI_DATA_PATH)
|
199 |
+
self.last_oni_update = date.today()
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Error updating ONI data: {e}")
|
202 |
+
finally:
|
203 |
+
if os.path.exists(temp_file.name):
|
204 |
+
os.remove(temp_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
def _should_update_oni(self):
|
207 |
+
"""Check if ONI data should be updated"""
|
208 |
+
today = datetime.now()
|
209 |
+
return (today.day in [1, 15] or
|
210 |
+
today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day)
|
|
|
|
|
|
|
|
|
211 |
|
|
|
|
|
212 |
def convert_oni_ascii_to_csv(self, input_file, output_file):
|
213 |
+
"""Convert ONI ASCII data to CSV format"""
|
214 |
data = defaultdict(lambda: [''] * 12)
|
215 |
season_to_month = {
|
216 |
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
217 |
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
218 |
}
|
219 |
+
|
220 |
with open(input_file, 'r') as f:
|
221 |
next(f) # Skip header
|
222 |
for line in f:
|
|
|
236 |
writer.writerow([year] + data[year])
|
237 |
|
238 |
def load_ibtracs_data(self):
|
239 |
+
"""Load IBTrACS data with caching"""
|
240 |
if os.path.exists(CACHE_FILE):
|
241 |
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
242 |
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
|
|
245 |
|
246 |
if os.path.exists(LOCAL_iBtrace_PATH):
|
247 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
|
248 |
+
ibtracs_url=LOCAL_iBtrace_PATH)
|
249 |
else:
|
250 |
response = requests.get(iBtrace_uri)
|
251 |
response.raise_for_status()
|
252 |
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
253 |
f.write(response.text)
|
254 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
|
255 |
+
ibtracs_url=LOCAL_iBtrace_PATH)
|
256 |
|
257 |
with open(CACHE_FILE, 'wb') as f:
|
258 |
pickle.dump(ibtracs, f)
|
259 |
return ibtracs
|
260 |
|
261 |
def update_typhoon_data(self):
|
262 |
+
"""Update typhoon data from IBTrACS"""
|
263 |
try:
|
264 |
response = requests.head(iBtrace_uri)
|
265 |
remote_modified = datetime.strptime(response.headers['Last-Modified'],
|
266 |
+
'%a, %d %b %Y %H:%M:%S GMT')
|
267 |
local_modified = (datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
|
268 |
if os.path.exists(LOCAL_iBtrace_PATH) else datetime.min)
|
269 |
|
|
|
272 |
response.raise_for_status()
|
273 |
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
274 |
f.write(response.text)
|
275 |
+
print("Typhoon data updated successfully")
|
276 |
except Exception as e:
|
277 |
print(f"Error updating typhoon data: {e}")
|
278 |
|
279 |
def load_data(self):
|
280 |
+
"""Load ONI and typhoon data"""
|
281 |
oni_data = pd.read_csv(ONI_DATA_PATH)
|
282 |
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
|
283 |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
|
|
285 |
|
286 |
def process_oni_data(self, oni_data):
|
287 |
"""Process ONI data"""
|
288 |
+
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
289 |
|
290 |
# Create a mapping for month numbers
|
291 |
month_map = {
|
|
|
300 |
return oni_long
|
301 |
|
302 |
def process_typhoon_data(self, typhoon_data):
|
303 |
+
"""Process typhoon data"""
|
304 |
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
305 |
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
306 |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
|
|
320 |
return typhoon_max
|
321 |
|
322 |
def merge_data(self):
|
323 |
+
"""Merge ONI and typhoon data"""
|
324 |
return pd.merge(self.typhoon_max, self.oni_long, on=['Year', 'Month'])
|
325 |
|
326 |
def categorize_typhoon(self, wind_speed):
|
327 |
+
"""Categorize typhoon based on wind speed"""
|
328 |
+
if np.isnan(wind_speed):
|
329 |
+
return 'Unknown'
|
330 |
if wind_speed >= 137:
|
331 |
return 'C5 Super Typhoon'
|
332 |
elif wind_speed >= 113:
|
|
|
343 |
return 'Tropical Depression'
|
344 |
|
345 |
def analyze_typhoon(self, start_year, start_month, end_year, end_month, enso_value='all'):
|
346 |
+
"""Main analysis function"""
|
347 |
start_date = datetime(start_year, start_month, 1)
|
348 |
end_date = datetime(end_year, end_month, 28)
|
349 |
|
|
|
363 |
'tracks': self.create_tracks_plot(filtered_data),
|
364 |
'wind': self.create_wind_analysis(filtered_data),
|
365 |
'pressure': self.create_pressure_analysis(filtered_data),
|
|
|
366 |
'stats': self.generate_statistics(filtered_data)
|
367 |
}
|
368 |
|
|
|
437 |
|
438 |
return fig
|
439 |
|
440 |
+
def create_wind_analysis(self, data):
|
441 |
+
"""Create wind speed analysis plot"""
|
442 |
+
fig = px.scatter(data,
|
443 |
+
x='ONI',
|
444 |
+
y='USA_WIND',
|
445 |
+
color='Category',
|
446 |
+
color_discrete_map=COLOR_MAP,
|
447 |
+
title='Wind Speed vs ONI Index',
|
448 |
+
labels={
|
449 |
+
'ONI': 'Oceanic Niño Index',
|
450 |
+
'USA_WIND': 'Maximum Wind Speed (kt)'
|
451 |
+
},
|
452 |
+
hover_data=['NAME', 'ISO_TIME', 'Category']
|
453 |
+
)
|
454 |
+
|
455 |
+
# Add regression line
|
456 |
+
x = data['ONI']
|
457 |
+
y = data['USA_WIND']
|
458 |
+
slope, intercept = np.polyfit(x, y, 1)
|
459 |
+
fig.add_trace(
|
460 |
+
go.Scatter(
|
461 |
+
x=x,
|
462 |
+
y=slope * x + intercept,
|
463 |
+
mode='lines',
|
464 |
+
name=f'Regression (slope={slope:.2f})',
|
465 |
+
line=dict(color='black', dash='dash')
|
466 |
+
)
|
467 |
+
)
|
468 |
+
|
469 |
+
return fig
|
470 |
+
|
471 |
+
def create_pressure_analysis(self, data):
|
472 |
+
"""Create pressure analysis plot"""
|
473 |
+
fig = px.scatter(data,
|
474 |
+
x='ONI',
|
475 |
+
y='WMO_PRES',
|
476 |
+
color='Category',
|
477 |
+
color_discrete_map=COLOR_MAP,
|
478 |
+
title='Pressure vs ONI Index',
|
479 |
+
labels={
|
480 |
+
'ONI': 'Oceanic Niño Index',
|
481 |
+
'WMO_PRES': 'Minimum Pressure (hPa)'
|
482 |
+
},
|
483 |
+
hover_data=['NAME', 'ISO_TIME', 'Category']
|
484 |
+
)
|
485 |
+
|
486 |
+
# Add regression line
|
487 |
+
x = data['ONI']
|
488 |
+
y = data['WMO_PRES']
|
489 |
+
slope, intercept = np.polyfit(x, y, 1)
|
490 |
+
fig.add_trace(
|
491 |
+
go.Scatter(
|
492 |
+
x=x,
|
493 |
+
y=slope * x + intercept,
|
494 |
+
mode='lines',
|
495 |
+
name=f'Regression (slope={slope:.2f})',
|
496 |
+
line=dict(color='black', dash='dash')
|
497 |
+
)
|
498 |
+
)
|
499 |
+
|
500 |
+
return fig
|
501 |
+
|
502 |
+
def generate_statistics(self, data):
|
503 |
+
"""Generate statistical summary"""
|
504 |
+
stats = {
|
505 |
+
'total_typhoons': len(data['SID'].unique()),
|
506 |
+
'avg_wind': data['USA_WIND'].mean(),
|
507 |
+
'max_wind': data['USA_WIND'].max(),
|
508 |
+
'avg_pressure': data['WMO_PRES'].mean(),
|
509 |
+
'min_pressure': data['WMO_PRES'].min(),
|
510 |
+
'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']),
|
511 |
+
'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']),
|
512 |
+
'category_counts': data['Category'].value_counts().to_dict()
|
513 |
+
}
|
514 |
+
|
515 |
+
return f"""
|
516 |
+
### Statistical Summary
|
517 |
+
|
518 |
+
- Total Typhoons: {stats['total_typhoons']}
|
519 |
+
- Average Wind Speed: {stats['avg_wind']:.2f} kt
|
520 |
+
- Maximum Wind Speed: {stats['max_wind']:.2f} kt
|
521 |
+
- Average Pressure: {stats['avg_pressure']:.2f} hPa
|
522 |
+
- Minimum Pressure: {stats['min_pressure']:.2f} hPa
|
523 |
+
- ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f}
|
524 |
+
- ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f}
|
525 |
+
|
526 |
+
### Category Distribution
|
527 |
+
{chr(10).join(f'- {cat}: {count}' for cat, count in stats['category_counts'].items())}
|
528 |
+
"""
|
529 |
+
|
530 |
def analyze_clusters(self, year, n_clusters):
|
531 |
"""Analyze typhoon clusters for a specific year"""
|
532 |
year_data = self.typhoon_data[self.typhoon_data['SEASON'] == year]
|
|
|
610 |
stats_text += f"- Cluster {i+1}: {cluster_counts[i]} typhoons\n"
|
611 |
|
612 |
return fig, stats_text
|
613 |
+
|
614 |
def get_typhoons_for_year(self, year):
|
615 |
"""Get list of typhoons for a specific year"""
|
616 |
+
try:
|
617 |
+
season = self.ibtracs.get_season(year)
|
618 |
+
storm_summary = season.summary()
|
619 |
+
|
620 |
+
typhoon_options = []
|
621 |
+
for i in range(storm_summary['season_storms']):
|
622 |
+
storm_id = storm_summary['id'][i]
|
623 |
+
storm_name = storm_summary['name'][i]
|
624 |
+
typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
|
625 |
+
|
626 |
+
return typhoon_options
|
627 |
+
except Exception as e:
|
628 |
+
print(f"Error getting typhoons for year {year}: {str(e)}")
|
629 |
+
return []
|
630 |
|
631 |
+
def create_typhoon_animation(self, year, storm_id, standard='atlantic'):
|
632 |
"""Create animated visualization of typhoon path"""
|
633 |
+
if not storm_id:
|
634 |
+
return go.Figure(), "Please select a typhoon"
|
635 |
+
|
636 |
+
storm = self.ibtracs.get_storm(storm_id)
|
637 |
+
|
638 |
+
fig = go.Figure()
|
639 |
+
|
640 |
+
# Base map setup with correct scaling
|
641 |
+
fig.update_layout(
|
642 |
+
title=f"{year} - {storm.name} Typhoon Path",
|
643 |
geo=dict(
|
644 |
+
projection_type='natural earth',
|
645 |
showland=True,
|
|
|
646 |
landcolor='rgb(243, 243, 243)',
|
647 |
countrycolor='rgb(204, 204, 204)',
|
648 |
+
coastlinecolor='rgb(100, 100, 100)',
|
649 |
showocean=True,
|
650 |
oceancolor='rgb(230, 250, 255)',
|
651 |
lataxis=dict(range=[0, 50]),
|
652 |
lonaxis=dict(range=[100, 180]),
|
653 |
+
center=dict(lat=20, lon=140),
|
654 |
+
),
|
655 |
+
updatemenus=[{
|
656 |
+
"buttons": [
|
657 |
+
{
|
658 |
+
"args": [None, {"frame": {"duration": 100, "redraw": True},
|
659 |
+
"fromcurrent": True,
|
660 |
+
"transition": {"duration": 0}}],
|
661 |
+
"label": "Play",
|
662 |
+
"method": "animate"
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
666 |
+
"mode": "immediate",
|
667 |
+
"transition": {"duration": 0}}],
|
668 |
+
"label": "Pause",
|
669 |
+
"method": "animate"
|
670 |
+
}
|
671 |
+
],
|
672 |
+
"direction": "left",
|
673 |
+
"pad": {"r": 10, "t": 87},
|
674 |
+
"showactive": False,
|
675 |
+
"type": "buttons",
|
676 |
+
"x": 0.1,
|
677 |
+
"xanchor": "right",
|
678 |
+
"y": 0,
|
679 |
+
"yanchor": "top"
|
680 |
+
}]
|
681 |
)
|
682 |
|
683 |
+
# Create animation frames
|
684 |
+
frames = []
|
685 |
+
for i in range(len(storm.time)):
|
686 |
+
category, color = self.categorize_typhoon_by_standard(storm.vmax[i], standard)
|
687 |
|
688 |
+
# Get extra radius data if available
|
689 |
+
radius_info = ""
|
690 |
+
if hasattr(storm, 'dict'):
|
691 |
+
r34_ne = storm.dict.get('USA_R34_NE', [None])[i] if 'USA_R34_NE' in storm.dict else None
|
692 |
+
r34_se = storm.dict.get('USA_R34_SE', [None])[i] if 'USA_R34_SE' in storm.dict else None
|
693 |
+
r34_sw = storm.dict.get('USA_R34_SW', [None])[i] if 'USA_R34_SW' in storm.dict else None
|
694 |
+
r34_nw = storm.dict.get('USA_R34_NW', [None])[i] if 'USA_R34_NW' in storm.dict else None
|
695 |
+
rmw = storm.dict.get('USA_RMW', [None])[i] if 'USA_RMW' in storm.dict else None
|
696 |
+
eye = storm.dict.get('USA_EYE', [None])[i] if 'USA_EYE' in storm.dict else None
|
697 |
|
698 |
+
if any([r34_ne, r34_se, r34_sw, r34_nw, rmw, eye]):
|
699 |
+
radius_info = f"<br>R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
|
700 |
+
radius_info += f"RMW: {rmw}<br>Eye Diameter: {eye}"
|
|
|
|
|
|
|
701 |
|
702 |
+
frame = go.Frame(
|
703 |
+
data=[
|
704 |
+
go.Scattergeo(
|
705 |
+
lon=storm.lon[:i+1],
|
706 |
+
lat=storm.lat[:i+1],
|
707 |
+
mode='lines',
|
708 |
+
line=dict(width=2, color='blue'),
|
709 |
+
name='Path Traveled',
|
710 |
+
showlegend=False,
|
711 |
+
),
|
712 |
+
go.Scattergeo(
|
713 |
+
lon=[storm.lon[i]],
|
714 |
+
lat=[storm.lat[i]],
|
715 |
+
mode='markers+text',
|
716 |
+
marker=dict(size=10, color=color, symbol='star'),
|
717 |
+
text=category,
|
718 |
+
textposition="top center",
|
719 |
+
textfont=dict(size=12, color=color),
|
720 |
+
name='Current Location',
|
721 |
+
hovertemplate=(
|
722 |
+
f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
|
723 |
+
f"Category: {category}<br>"
|
724 |
+
f"Wind Speed: {storm.vmax[i]:.1f} kt<br>"
|
725 |
+
f"{radius_info}"
|
726 |
+
),
|
727 |
+
),
|
728 |
+
],name=f"frame{i}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
)
|
730 |
+
frames.append(frame)
|
731 |
|
732 |
+
fig.frames = frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
|
734 |
+
# Add initial track and starting point
|
|
|
|
|
|
|
735 |
fig.add_trace(
|
736 |
+
go.Scattergeo(
|
737 |
+
lon=storm.lon,
|
738 |
+
lat=storm.lat,
|
739 |
mode='lines',
|
740 |
+
line=dict(width=2, color='gray'),
|
741 |
+
name='Complete Path',
|
742 |
+
showlegend=True,
|
743 |
)
|
744 |
)
|
|
|
|
|
745 |
|
746 |
+
fig.add_trace(
|
747 |
+
go.Scattergeo(
|
748 |
+
lon=[storm.lon[0]],
|
749 |
+
lat=[storm.lat[0]],
|
750 |
+
mode='markers',
|
751 |
+
marker=dict(size=10, color='green', symbol='star'),
|
752 |
+
name='Starting Point',
|
753 |
+
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
|
754 |
+
hoverinfo='text+name',
|
755 |
+
)
|
756 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
757 |
|
758 |
+
# Add slider for frame selection
|
759 |
+
sliders = [{
|
760 |
+
"active": 0,
|
761 |
+
"yanchor": "top",
|
762 |
+
"xanchor": "left",
|
763 |
+
"currentvalue": {
|
764 |
+
"font": {"size": 20},
|
765 |
+
"prefix": "Time: ",
|
766 |
+
"visible": True,
|
767 |
+
"xanchor": "right"
|
768 |
+
},
|
769 |
+
"transition": {"duration": 100, "easing": "cubic-in-out"},
|
770 |
+
"pad": {"b": 10, "t": 50},
|
771 |
+
"len": 0.9,
|
772 |
+
"x": 0.1,
|
773 |
+
"y": 0,
|
774 |
+
"steps": [
|
775 |
+
{
|
776 |
+
"args": [[f"frame{k}"],
|
777 |
+
{"frame": {"duration": 100, "redraw": True},
|
778 |
+
"mode": "immediate",
|
779 |
+
"transition": {"duration": 0}}
|
780 |
+
],
|
781 |
+
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
|
782 |
+
"method": "animate"
|
783 |
+
}
|
784 |
+
for k in range(len(storm.time))
|
785 |
+
]
|
786 |
+
}]
|
787 |
|
788 |
+
fig.update_layout(sliders=sliders)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
789 |
|
790 |
+
info_text = f"""
|
791 |
+
### Typhoon Information
|
792 |
+
- **Name:** {storm.name}
|
793 |
+
- **Start Date:** {storm.time[0].strftime('%Y-%m-%d %H:%M')}
|
794 |
+
- **End Date:** {storm.time[-1].strftime('%Y-%m-%d %H:%M')}
|
795 |
+
- **Duration:** {(storm.time[-1] - storm.time[0]).total_seconds() / 3600:.1f} hours
|
796 |
+
- **Maximum Wind Speed:** {max(storm.vmax):.1f} kt
|
797 |
+
- **Minimum Pressure:** {min(storm.mslp):.1f} hPa
|
798 |
+
- **Peak Category:** {self.categorize_typhoon_by_standard(max(storm.vmax), standard)[0]}
|
799 |
+
"""
|
800 |
|
801 |
+
return fig, info_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
|
803 |
+
def search_typhoons(self, query):
|
804 |
+
"""Search for typhoons by name"""
|
805 |
+
if not query:
|
806 |
+
return go.Figure(), "Please enter a typhoon name to search"
|
|
|
|
|
|
|
807 |
|
808 |
+
# Find all typhoons matching the query
|
809 |
+
matching_storms = []
|
810 |
|
811 |
+
# Limit search to last 30 years to improve performance
|
812 |
+
current_year = datetime.now().year
|
813 |
+
start_year = current_year - 30
|
814 |
|
815 |
+
for year in range(start_year, current_year + 1):
|
816 |
+
try:
|
817 |
+
season = self.ibtracs.get_season(year)
|
818 |
+
for storm_id in season.summary()['id']:
|
819 |
+
storm = self.ibtracs.get_storm(storm_id)
|
820 |
+
if query.lower() in storm.name.lower():
|
821 |
+
matching_storms.append((year, storm))
|
822 |
+
except Exception as e:
|
823 |
+
print(f"Error searching year {year}: {str(e)}")
|
824 |
+
continue
|
825 |
+
|
826 |
+
if not matching_storms:
|
827 |
+
return go.Figure(), "No typhoons found matching your search"
|
828 |
+
|
829 |
+
# Create visualization of all matching typhoons
|
830 |
fig = go.Figure()
|
831 |
|
832 |
fig.update_layout(
|
833 |
+
title=f"Typhoons Matching: '{query}'",
|
|
|
834 |
geo=dict(
|
835 |
+
projection_type='natural earth',
|
836 |
showland=True,
|
|
|
837 |
landcolor='rgb(243, 243, 243)',
|
838 |
countrycolor='rgb(204, 204, 204)',
|
839 |
+
coastlinecolor='rgb(100, 100, 100)',
|
840 |
showocean=True,
|
841 |
oceancolor='rgb(230, 250, 255)',
|
842 |
lataxis=dict(range=[0, 50]),
|
843 |
lonaxis=dict(range=[100, 180]),
|
844 |
+
center=dict(lat=20, lon=140),
|
845 |
)
|
846 |
)
|
847 |
|
848 |
+
# Plot each matching storm with a different color
|
849 |
+
colors = px.colors.qualitative.Plotly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
850 |
|
851 |
+
for i, (year, storm) in enumerate(matching_storms):
|
852 |
+
color = colors[i % len(colors)]
|
853 |
+
|
854 |
+
fig.add_trace(go.Scattergeo(
|
855 |
+
lon=storm.lon,
|
856 |
+
lat=storm.lat,
|
857 |
+
mode='lines',
|
858 |
+
line=dict(width=3, color=color),
|
859 |
+
name=f"{storm.name} ({year})",
|
860 |
+
hovertemplate=(
|
861 |
+
f"Name: {storm.name}<br>"
|
862 |
+
f"Year: {year}<br>"
|
863 |
+
f"Max Wind: {max(storm.vmax):.1f} kt<br>"
|
864 |
+
f"Min Pressure: {min(storm.mslp):.1f} hPa<br>"
|
865 |
+
f"Position: %{lat:.2f}°N, %{lon:.2f}°E"
|
866 |
+
)
|
867 |
+
))
|
868 |
|
869 |
+
# Add starting points
|
870 |
+
for i, (year, storm) in enumerate(matching_storms):
|
871 |
+
color = colors[i % len(colors)]
|
872 |
+
|
873 |
+
fig.add_trace(go.Scattergeo(
|
874 |
+
lon=[storm.lon[0]],
|
875 |
+
lat=[storm.lat[0]],
|
876 |
+
mode='markers',
|
877 |
+
marker=dict(size=10, color=color, symbol='circle'),
|
878 |
+
name=f"Start: {storm.name} ({year})",
|
879 |
+
showlegend=False,
|
880 |
+
hoverinfo='name'
|
881 |
+
))
|
882 |
|
883 |
+
# Create information text
|
884 |
+
info_text = f"### Found {len(matching_storms)} typhoons matching '{query}':\n\n"
|
|
|
|
|
885 |
|
886 |
+
for year, storm in matching_storms:
|
887 |
+
info_text += f"- **{storm.name} ({year})**\n"
|
888 |
+
info_text += f" - Time: {storm.time[0].strftime('%Y-%m-%d')} to {storm.time[-1].strftime('%Y-%m-%d')}\n"
|
889 |
+
info_text += f" - Max Wind: {max(storm.vmax):.1f} kt\n"
|
890 |
+
info_text += f" - Min Pressure: {min(storm.mslp):.1f} hPa\n"
|
891 |
+
info_text += f" - Category: {self.categorize_typhoon_by_standard(max(storm.vmax))[0]}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
892 |
|
893 |
+
return fig, info_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
894 |
|
895 |
+
def categorize_typhoon_by_standard(self, wind_speed, standard='atlantic'):
|
896 |
+
"""
|
897 |
+
Categorize typhoon based on wind speed and chosen standard
|
898 |
+
wind_speed is in knots
|
899 |
+
"""
|
900 |
+
if standard == 'taiwan':
|
901 |
+
# Convert knots to m/s for Taiwan standard
|
902 |
+
wind_speed_ms = wind_speed * 0.514444
|
903 |
+
|
904 |
+
if wind_speed_ms >= 51.0:
|
905 |
+
return 'Strong Typhoon', 'rgb(255, 0, 0)'
|
906 |
+
elif wind_speed_ms >= 33.7:
|
907 |
+
return 'Medium Typhoon', 'rgb(255, 127, 0)'
|
908 |
+
elif wind_speed_ms >= 17.2:
|
909 |
+
return 'Mild Typhoon', 'rgb(255, 255, 0)'
|
910 |
+
else:
|
911 |
+
return 'Tropical Depression', 'rgb(173, 216, 230)'
|
912 |
+
else:
|
913 |
+
# Atlantic standard uses knots
|
914 |
+
if wind_speed >= 137:
|
915 |
+
return 'C5 Super Typhoon', 'rgb(255, 0, 0)'
|
916 |
+
elif wind_speed >= 113:
|
917 |
+
return 'C4 Very Strong Typhoon', 'rgb(255, 63, 0)'
|
918 |
+
elif wind_speed >= 96:
|
919 |
+
return 'C3 Strong Typhoon', 'rgb(255, 127, 0)'
|
920 |
+
elif wind_speed >= 83:
|
921 |
+
return 'C2 Typhoon', 'rgb(255, 191, 0)'
|
922 |
+
elif wind_speed >= 64:
|
923 |
+
return 'C1 Typhoon', 'rgb(255, 255, 0)'
|
924 |
+
elif wind_speed >= 34:
|
925 |
+
return 'Tropical Storm', 'rgb(0, 255, 255)'
|
926 |
+
else:
|
927 |
+
return 'Tropical Depression', 'rgb(173, 216, 230)'
|
928 |
|
929 |
def create_interface():
|
930 |
analyzer = TyphoonAnalyzer()
|
|
|
951 |
|
952 |
analyze_btn = gr.Button("Analyze")
|
953 |
|
954 |
+
tracks_plot = gr.Plot(label="Typhoon Tracks")
|
|
|
|
|
|
|
|
|
955 |
|
|
|
|
|
|
|
|
|
956 |
with gr.Row():
|
957 |
+
wind_plot = gr.Plot(label="Wind Speed Analysis")
|
958 |
+
pressure_plot = gr.Plot(label="Pressure Analysis")
|
959 |
|
960 |
+
stats_text = gr.Markdown()
|
|
|
|
|
961 |
|
962 |
+
# Typhoon Animation Tab
|
963 |
with gr.Tab("Typhoon Animation"):
|
964 |
with gr.Row():
|
965 |
animation_year = gr.Slider(
|
966 |
+
minimum=1950,
|
967 |
+
maximum=2024,
|
968 |
+
value=2020,
|
969 |
step=1,
|
970 |
label="Select Year"
|
971 |
)
|
|
|
976 |
label="Select Typhoon",
|
977 |
interactive=True
|
978 |
)
|
979 |
+
|
980 |
+
standard_dropdown = gr.Dropdown(
|
981 |
+
choices=[
|
982 |
+
{"label": "Atlantic Standard", "value": "atlantic"},
|
983 |
+
{"label": "Taiwan Standard", "value": "taiwan"}
|
984 |
+
],
|
985 |
+
value="atlantic",
|
986 |
+
label="Classification Standard"
|
987 |
+
)
|
988 |
|
989 |
+
animation_btn = gr.Button("Show Typhoon Path", variant="primary")
|
990 |
+
animation_plot = gr.Plot(label="Typhoon Path Animation")
|
991 |
animation_info = gr.Markdown()
|
992 |
|
993 |
# Search Tab
|
994 |
with gr.Tab("Typhoon Search"):
|
995 |
with gr.Row():
|
996 |
+
search_input = gr.Textbox(label="Search Typhoon Name")
|
997 |
+
search_btn = gr.Button("Search Typhoons", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
998 |
|
999 |
+
search_results = gr.Plot(label="Search Results")
|
|
|
1000 |
search_info = gr.Markdown()
|
1001 |
|
1002 |
# Event handlers
|
|
|
1009 |
results['stats']
|
1010 |
]
|
1011 |
|
|
|
|
|
|
|
1012 |
def update_typhoon_choices(year):
|
1013 |
typhoons = analyzer.get_typhoons_for_year(year)
|
1014 |
return gr.update(choices=typhoons, value=None)
|
|
|
1020 |
outputs=[tracks_plot, wind_plot, pressure_plot, stats_text]
|
1021 |
)
|
1022 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1023 |
# Connect events for Animation tab
|
1024 |
animation_year.change(
|
1025 |
update_typhoon_choices,
|
|
|
1029 |
|
1030 |
animation_btn.click(
|
1031 |
analyzer.create_typhoon_animation,
|
1032 |
+
inputs=[animation_year, animation_typhoon, standard_dropdown],
|
1033 |
outputs=[animation_plot, animation_info]
|
1034 |
)
|
1035 |
|
1036 |
# Connect events for Search tab
|
|
|
|
|
|
|
|
|
|
|
|
|
1037 |
search_btn.click(
|
1038 |
+
analyzer.search_typhoons,
|
1039 |
+
inputs=[search_input],
|
1040 |
+
outputs=[search_results, search_info]
|
1041 |
)
|
1042 |
|
1043 |
return demo
|