Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -404,17 +404,98 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
404 |
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
|
405 |
typhoon_search = gr.Textbox(label="Typhoon Search")
|
406 |
analyze_btn = gr.Button("Generate Tracks")
|
407 |
-
tracks_plot = gr.Plot(label="Typhoon Tracks")
|
408 |
|
409 |
-
#
|
410 |
-
|
411 |
-
|
412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
analyze_btn.click(
|
415 |
-
fn=
|
416 |
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
|
417 |
-
outputs=tracks_plot
|
418 |
)
|
419 |
|
420 |
with gr.Tab("Wind Analysis"):
|
@@ -497,50 +578,95 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
497 |
standard_dropdown = gr.Dropdown(label="Classification Standard",
|
498 |
choices=['atlantic', 'taiwan'], value='atlantic')
|
499 |
|
500 |
-
#
|
501 |
-
def
|
502 |
if not typhoon:
|
503 |
return None
|
504 |
|
505 |
typhoon_id = typhoon.split('(')[-1].strip(')')
|
506 |
storm = ibtracs.get_storm(typhoon_id)
|
507 |
|
508 |
-
# Create
|
509 |
frames = []
|
|
|
|
|
510 |
for i in range(len(storm.time)):
|
|
|
511 |
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
|
|
|
|
529 |
)
|
530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
|
532 |
-
# Initial
|
533 |
fig = go.Figure(
|
534 |
data=[
|
535 |
go.Scattergeo(
|
536 |
-
lon=[storm.lon[0]],
|
537 |
-
|
538 |
-
|
|
|
|
|
|
|
539 |
)
|
540 |
],
|
541 |
frames=frames
|
542 |
)
|
543 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
# Update layout with better animation controls
|
545 |
fig.update_layout(
|
546 |
title=f"{year} {storm.name} Typhoon Path",
|
@@ -551,13 +677,15 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
551 |
landcolor='rgb(243, 243, 243)',
|
552 |
countrycolor='rgb(204, 204, 204)',
|
553 |
coastlinecolor='rgb(204, 204, 204)',
|
554 |
-
|
555 |
-
|
|
|
|
|
556 |
),
|
557 |
updatemenus=[{
|
558 |
"buttons": [
|
559 |
{
|
560 |
-
"args": [None, {"frame": {"duration":
|
561 |
"label": "Play",
|
562 |
"method": "animate"
|
563 |
},
|
@@ -578,7 +706,10 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
578 |
"yanchor": "top",
|
579 |
"xanchor": "left",
|
580 |
"currentvalue": {
|
581 |
-
"
|
|
|
|
|
|
|
582 |
},
|
583 |
"pad": {"b": 10, "t": 50},
|
584 |
"len": 0.9,
|
@@ -590,24 +721,34 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
590 |
"frame": {"duration": 0, "redraw": True},
|
591 |
"mode": "immediate"
|
592 |
}],
|
593 |
-
"label":
|
594 |
"method": "animate"
|
595 |
} for i, f in enumerate(frames)
|
596 |
]
|
597 |
-
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
)
|
599 |
|
600 |
return fig
|
601 |
|
602 |
animate_btn = gr.Button("Generate Animation")
|
603 |
-
path_plot = gr.Plot(label="Typhoon Path Animation")
|
604 |
animation_info = gr.Markdown("""
|
605 |
### Animation Instructions
|
606 |
1. Select a year and typhoon from the dropdowns
|
607 |
2. Click "Generate Animation"
|
608 |
3. Use the play button to start the animation
|
609 |
-
4. Use the slider to
|
610 |
-
5.
|
|
|
611 |
""")
|
612 |
|
613 |
# Year dropdown change function
|
@@ -619,9 +760,21 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
619 |
|
620 |
year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
|
621 |
animate_btn.click(
|
622 |
-
fn=
|
623 |
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
|
624 |
outputs=path_plot
|
625 |
)
|
626 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
627 |
demo.launch()
|
|
|
404 |
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
|
405 |
typhoon_search = gr.Textbox(label="Typhoon Search")
|
406 |
analyze_btn = gr.Button("Generate Tracks")
|
|
|
407 |
|
408 |
+
# Display all tracks
|
409 |
+
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
|
410 |
+
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
|
411 |
+
|
412 |
+
# Enhanced function to show all track data
|
413 |
+
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
414 |
+
start_date = datetime(start_year, start_month, 1)
|
415 |
+
end_date = datetime(end_year, end_month, 28)
|
416 |
+
filtered_data = merged_data[
|
417 |
+
(merged_data['ISO_TIME'] >= start_date) &
|
418 |
+
(merged_data['ISO_TIME'] <= end_date)
|
419 |
+
]
|
420 |
+
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
421 |
+
|
422 |
+
if enso_phase != 'all':
|
423 |
+
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
|
424 |
+
|
425 |
+
# Get all unique storms
|
426 |
+
unique_storms = filtered_data['SID'].unique()
|
427 |
+
count = len(unique_storms)
|
428 |
+
|
429 |
+
# Create the map with all tracks
|
430 |
+
fig = go.Figure()
|
431 |
+
|
432 |
+
# Add all tracks
|
433 |
+
for sid in unique_storms:
|
434 |
+
storm_data = typhoon_data[typhoon_data['SID'] == sid]
|
435 |
+
name = storm_data['NAME'].iloc[0] if not pd.isna(storm_data['NAME'].iloc[0]) else "Unnamed"
|
436 |
+
|
437 |
+
# Get ENSO phase color
|
438 |
+
storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
|
439 |
+
color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
|
440 |
+
|
441 |
+
# Add the track line
|
442 |
+
fig.add_trace(go.Scattergeo(
|
443 |
+
lon=storm_data['LON'],
|
444 |
+
lat=storm_data['LAT'],
|
445 |
+
mode='lines',
|
446 |
+
name=f"{name} ({storm_data['SEASON'].iloc[0]})",
|
447 |
+
line=dict(width=1.5, color=color),
|
448 |
+
hoverinfo="name"
|
449 |
+
))
|
450 |
+
|
451 |
+
# Highlight searched typhoon if specified
|
452 |
+
if typhoon_search:
|
453 |
+
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
|
454 |
+
if search_mask.any():
|
455 |
+
for sid in typhoon_data[search_mask]['SID'].unique():
|
456 |
+
storm_data = typhoon_data[typhoon_data['SID'] == sid]
|
457 |
+
fig.add_trace(go.Scattergeo(
|
458 |
+
lon=storm_data['LON'],
|
459 |
+
lat=storm_data['LAT'],
|
460 |
+
mode='lines+markers',
|
461 |
+
name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
|
462 |
+
line=dict(width=3, color='yellow'),
|
463 |
+
marker=dict(size=5),
|
464 |
+
hoverinfo="name"
|
465 |
+
))
|
466 |
+
|
467 |
+
# Add colorbar/legend for ENSO phases
|
468 |
+
fig.update_layout(
|
469 |
+
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
|
470 |
+
geo=dict(
|
471 |
+
projection_type='natural earth',
|
472 |
+
showland=True,
|
473 |
+
showcoastlines=True,
|
474 |
+
landcolor='rgb(243, 243, 243)',
|
475 |
+
countrycolor='rgb(204, 204, 204)',
|
476 |
+
coastlinecolor='rgb(204, 204, 204)',
|
477 |
+
center=dict(lon=140, lat=20),
|
478 |
+
projection_scale=3
|
479 |
+
),
|
480 |
+
legend_title="Typhoons by ENSO Phase",
|
481 |
+
showlegend=True,
|
482 |
+
height=700
|
483 |
+
)
|
484 |
+
|
485 |
+
# Add annotations explaining colors
|
486 |
+
fig.add_annotation(
|
487 |
+
x=0.02, y=0.98, xref="paper", yref="paper",
|
488 |
+
text="Red: El Niño, Blue: La Niña, Green: Neutral",
|
489 |
+
showarrow=False, align="left",
|
490 |
+
bgcolor="rgba(255,255,255,0.8)"
|
491 |
+
)
|
492 |
+
|
493 |
+
return fig, f"Total typhoons displayed: {count}"
|
494 |
|
495 |
analyze_btn.click(
|
496 |
+
fn=get_full_tracks,
|
497 |
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
|
498 |
+
outputs=[tracks_plot, typhoon_count]
|
499 |
)
|
500 |
|
501 |
with gr.Tab("Wind Analysis"):
|
|
|
578 |
standard_dropdown = gr.Dropdown(label="Classification Standard",
|
579 |
choices=['atlantic', 'taiwan'], value='atlantic')
|
580 |
|
581 |
+
# Completely redesigned animation function to show track movement clearly
|
582 |
+
def generate_improved_animation(year, typhoon, standard):
|
583 |
if not typhoon:
|
584 |
return None
|
585 |
|
586 |
typhoon_id = typhoon.split('(')[-1].strip(')')
|
587 |
storm = ibtracs.get_storm(typhoon_id)
|
588 |
|
589 |
+
# Create frames that show the growing track
|
590 |
frames = []
|
591 |
+
|
592 |
+
# Add frames showing growing track
|
593 |
for i in range(len(storm.time)):
|
594 |
+
# Get wind category and color
|
595 |
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
596 |
+
|
597 |
+
# Create frame showing path up to current point
|
598 |
+
frame_data = [
|
599 |
+
# Path line up to current point
|
600 |
+
go.Scattergeo(
|
601 |
+
lon=storm.lon[:i+1],
|
602 |
+
lat=storm.lat[:i+1],
|
603 |
+
mode='lines',
|
604 |
+
line=dict(width=2, color='blue'),
|
605 |
+
name="Track"
|
606 |
+
),
|
607 |
+
# Current position
|
608 |
+
go.Scattergeo(
|
609 |
+
lon=[storm.lon[i]],
|
610 |
+
lat=[storm.lat[i]],
|
611 |
+
mode='markers',
|
612 |
+
marker=dict(size=12, color=color),
|
613 |
+
name=f"Current Position",
|
614 |
+
text=f"Time: {storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>Wind: {storm.vmax[i]} kt<br>Category: {category}"
|
615 |
)
|
616 |
+
]
|
617 |
+
|
618 |
+
# Add previous positions as smaller markers
|
619 |
+
if i > 0:
|
620 |
+
frame_data.append(
|
621 |
+
go.Scattergeo(
|
622 |
+
lon=storm.lon[:i],
|
623 |
+
lat=storm.lat[:i],
|
624 |
+
mode='markers',
|
625 |
+
marker=dict(size=5, color='rgba(100,100,100,0.5)'),
|
626 |
+
name="Previous Positions",
|
627 |
+
showlegend=False
|
628 |
+
)
|
629 |
+
)
|
630 |
+
|
631 |
+
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
632 |
|
633 |
+
# Initial figure showing start point
|
634 |
fig = go.Figure(
|
635 |
data=[
|
636 |
go.Scattergeo(
|
637 |
+
lon=[storm.lon[0]],
|
638 |
+
lat=[storm.lat[0]],
|
639 |
+
mode='markers',
|
640 |
+
marker=dict(size=12, color='green'),
|
641 |
+
name="Starting Position",
|
642 |
+
text=f"Start: {storm.time[0].strftime('%Y-%m-%d %H:%M')}"
|
643 |
)
|
644 |
],
|
645 |
frames=frames
|
646 |
)
|
647 |
|
648 |
+
# Add category legend
|
649 |
+
if standard == 'atlantic':
|
650 |
+
for cat, details in atlantic_standard.items():
|
651 |
+
fig.add_trace(go.Scattergeo(
|
652 |
+
lon=[None], lat=[None], mode='markers',
|
653 |
+
marker=dict(size=10, color=details['color']),
|
654 |
+
name=cat
|
655 |
+
))
|
656 |
+
else:
|
657 |
+
for cat, details in taiwan_standard.items():
|
658 |
+
fig.add_trace(go.Scattergeo(
|
659 |
+
lon=[None], lat=[None], mode='markers',
|
660 |
+
marker=dict(size=10, color=details['color']),
|
661 |
+
name=cat
|
662 |
+
))
|
663 |
+
|
664 |
+
# Focus map on storm area
|
665 |
+
min_lat, max_lat = min(storm.lat), max(storm.lat)
|
666 |
+
min_lon, max_lon = min(storm.lon), max(storm.lon)
|
667 |
+
lat_padding = (max_lat - min_lat) * 0.3 or 5
|
668 |
+
lon_padding = (max_lon - min_lon) * 0.3 or 5
|
669 |
+
|
670 |
# Update layout with better animation controls
|
671 |
fig.update_layout(
|
672 |
title=f"{year} {storm.name} Typhoon Path",
|
|
|
677 |
landcolor='rgb(243, 243, 243)',
|
678 |
countrycolor='rgb(204, 204, 204)',
|
679 |
coastlinecolor='rgb(204, 204, 204)',
|
680 |
+
showocean=True,
|
681 |
+
oceancolor='rgb(230, 230, 255)',
|
682 |
+
lataxis={'range': [min_lat - lat_padding, max_lat + lat_padding]},
|
683 |
+
lonaxis={'range': [min_lon - lon_padding, max_lon + lon_padding]}
|
684 |
),
|
685 |
updatemenus=[{
|
686 |
"buttons": [
|
687 |
{
|
688 |
+
"args": [None, {"frame": {"duration": 100, "redraw": True}, "fromcurrent": True, "mode": "immediate"}],
|
689 |
"label": "Play",
|
690 |
"method": "animate"
|
691 |
},
|
|
|
706 |
"yanchor": "top",
|
707 |
"xanchor": "left",
|
708 |
"currentvalue": {
|
709 |
+
"font": {"size": 12},
|
710 |
+
"prefix": "Time: ",
|
711 |
+
"visible": True,
|
712 |
+
"xanchor": "right"
|
713 |
},
|
714 |
"pad": {"b": 10, "t": 50},
|
715 |
"len": 0.9,
|
|
|
721 |
"frame": {"duration": 0, "redraw": True},
|
722 |
"mode": "immediate"
|
723 |
}],
|
724 |
+
"label": storm.time[i].strftime('%m/%d %H:00') if i < len(storm.time) else "",
|
725 |
"method": "animate"
|
726 |
} for i, f in enumerate(frames)
|
727 |
]
|
728 |
+
}],
|
729 |
+
height=700,
|
730 |
+
showlegend=True,
|
731 |
+
legend=dict(
|
732 |
+
yanchor="top",
|
733 |
+
y=0.99,
|
734 |
+
xanchor="left",
|
735 |
+
x=0.01,
|
736 |
+
bgcolor="rgba(255, 255, 255, 0.8)"
|
737 |
+
)
|
738 |
)
|
739 |
|
740 |
return fig
|
741 |
|
742 |
animate_btn = gr.Button("Generate Animation")
|
743 |
+
path_plot = gr.Plot(label="Typhoon Path Animation", elem_id="animation_plot")
|
744 |
animation_info = gr.Markdown("""
|
745 |
### Animation Instructions
|
746 |
1. Select a year and typhoon from the dropdowns
|
747 |
2. Click "Generate Animation"
|
748 |
3. Use the play button to start the animation
|
749 |
+
4. Use the slider to manually control the animation timeline
|
750 |
+
5. The animation shows the typhoon track developing over time, with the current position highlighted
|
751 |
+
6. Colors indicate typhoon intensity according to the selected classification standard
|
752 |
""")
|
753 |
|
754 |
# Year dropdown change function
|
|
|
760 |
|
761 |
year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
|
762 |
animate_btn.click(
|
763 |
+
fn=generate_improved_animation,
|
764 |
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
|
765 |
outputs=path_plot
|
766 |
)
|
767 |
|
768 |
+
# Custom CSS for better spacing and to ensure plots are visible
|
769 |
+
gr.HTML("""
|
770 |
+
<style>
|
771 |
+
#tracks_plot, #animation_plot {
|
772 |
+
height: 700px !important;
|
773 |
+
}
|
774 |
+
.plot-container {
|
775 |
+
min-height: 600px;
|
776 |
+
}
|
777 |
+
</style>
|
778 |
+
""")
|
779 |
+
|
780 |
demo.launch()
|