Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -294,29 +294,6 @@ def generate_main_analysis(start_year, start_month, end_year, end_month, enso_ph
|
|
294 |
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
|
295 |
|
296 |
# Path animation function
|
297 |
-
def generate_path_animation(year, typhoon, standard):
|
298 |
-
typhoon_id = typhoon.split('(')[-1].strip(')')
|
299 |
-
storm = ibtracs.get_storm(typhoon_id)
|
300 |
-
fig = go.Figure()
|
301 |
-
fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray')))
|
302 |
-
fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers',
|
303 |
-
marker=dict(size=10, color='green', symbol='star'), name='Start'))
|
304 |
-
frames = [
|
305 |
-
go.Frame(data=[
|
306 |
-
go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue')),
|
307 |
-
go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers',
|
308 |
-
marker=dict(size=10, color=categorize_typhoon_by_standard(storm.vmax[i], standard)[1]))
|
309 |
-
], name=f"frame{i}") for i in range(len(storm.time))
|
310 |
-
]
|
311 |
-
fig.frames = frames
|
312 |
-
fig.update_layout(
|
313 |
-
title=f"{year} {storm.name} Typhoon Path",
|
314 |
-
geo=dict(projection_type='natural earth', showland=True),
|
315 |
-
updatemenus=[{"buttons": [{"label": "Play", "method": "animate", "args": [None, {"frame": {"duration": 100}}]},
|
316 |
-
{"label": "Pause", "method": "animate", "args": [[None], {"mode": "immediate"}]}]}]
|
317 |
-
)
|
318 |
-
return fig
|
319 |
-
|
320 |
def categorize_typhoon_by_standard(wind_speed, standard):
|
321 |
if standard == 'taiwan':
|
322 |
wind_speed_ms = wind_speed * 0.514444
|
@@ -342,6 +319,164 @@ def categorize_typhoon_by_standard(wind_speed, standard):
|
|
342 |
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
|
343 |
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
# Logistic regression functions
|
346 |
def perform_wind_regression(start_year, start_month, end_year, end_month):
|
347 |
start_date = datetime(start_year, start_month, 1)
|
@@ -404,12 +539,9 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
404 |
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
|
405 |
typhoon_search = gr.Textbox(label="Typhoon Search")
|
406 |
analyze_btn = gr.Button("Generate Tracks")
|
407 |
-
|
408 |
-
# Display all tracks
|
409 |
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
|
410 |
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
|
411 |
|
412 |
-
# Enhanced function to show all track data
|
413 |
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
414 |
start_date = datetime(start_year, start_month, 1)
|
415 |
end_date = datetime(end_year, end_month, 28)
|
@@ -418,53 +550,34 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
418 |
(merged_data['ISO_TIME'] <= end_date)
|
419 |
]
|
420 |
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
421 |
-
|
422 |
if enso_phase != 'all':
|
423 |
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
|
424 |
-
|
425 |
-
# Get all unique storms
|
426 |
unique_storms = filtered_data['SID'].unique()
|
427 |
count = len(unique_storms)
|
428 |
-
|
429 |
-
# Create the map with all tracks
|
430 |
fig = go.Figure()
|
431 |
-
|
432 |
-
# Add all tracks
|
433 |
for sid in unique_storms:
|
434 |
storm_data = typhoon_data[typhoon_data['SID'] == sid]
|
435 |
name = storm_data['NAME'].iloc[0] if not pd.isna(storm_data['NAME'].iloc[0]) else "Unnamed"
|
436 |
-
|
437 |
-
# Get ENSO phase color
|
438 |
storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
|
439 |
color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
|
440 |
-
|
441 |
-
# Add the track line
|
442 |
fig.add_trace(go.Scattergeo(
|
443 |
-
lon=storm_data['LON'],
|
444 |
-
lat=storm_data['LAT'],
|
445 |
-
mode='lines',
|
446 |
name=f"{name} ({storm_data['SEASON'].iloc[0]})",
|
447 |
line=dict(width=1.5, color=color),
|
448 |
hoverinfo="name"
|
449 |
))
|
450 |
-
|
451 |
-
# Highlight searched typhoon if specified
|
452 |
if typhoon_search:
|
453 |
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
|
454 |
if search_mask.any():
|
455 |
for sid in typhoon_data[search_mask]['SID'].unique():
|
456 |
storm_data = typhoon_data[typhoon_data['SID'] == sid]
|
457 |
fig.add_trace(go.Scattergeo(
|
458 |
-
lon=storm_data['LON'],
|
459 |
-
lat=storm_data['LAT'],
|
460 |
-
mode='lines+markers',
|
461 |
name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
|
462 |
line=dict(width=3, color='yellow'),
|
463 |
marker=dict(size=5),
|
464 |
hoverinfo="name"
|
465 |
))
|
466 |
-
|
467 |
-
# Add colorbar/legend for ENSO phases
|
468 |
fig.update_layout(
|
469 |
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
|
470 |
geo=dict(
|
@@ -481,15 +594,12 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
481 |
showlegend=True,
|
482 |
height=700
|
483 |
)
|
484 |
-
|
485 |
-
# Add annotations explaining colors
|
486 |
fig.add_annotation(
|
487 |
x=0.02, y=0.98, xref="paper", yref="paper",
|
488 |
text="Red: El Niño, Blue: La Niña, Green: Neutral",
|
489 |
showarrow=False, align="left",
|
490 |
bgcolor="rgba(255,255,255,0.8)"
|
491 |
)
|
492 |
-
|
493 |
return fig, f"Total typhoons displayed: {count}"
|
494 |
|
495 |
analyze_btn.click(
|
@@ -510,7 +620,6 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
510 |
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
|
511 |
wind_regression_results = gr.Textbox(label="Wind Regression Results")
|
512 |
|
513 |
-
# Fixed function for wind analysis
|
514 |
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
515 |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
|
516 |
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
|
@@ -534,7 +643,6 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
534 |
pressure_scatter = gr.Plot(label="Pressure vs ONI")
|
535 |
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
|
536 |
|
537 |
-
# Fixed function for pressure analysis
|
538 |
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
539 |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
|
540 |
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
|
@@ -559,7 +667,6 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
559 |
slopes_text = gr.Textbox(label="Regression Slopes")
|
560 |
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
|
561 |
|
562 |
-
# Fixed function for longitude analysis
|
563 |
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
564 |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
|
565 |
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
|
@@ -575,183 +682,19 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
575 |
with gr.Row():
|
576 |
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
|
577 |
typhoon_dropdown = gr.Dropdown(label="Typhoon")
|
578 |
-
standard_dropdown = gr.Dropdown(label="Classification Standard",
|
579 |
-
choices=['atlantic', 'taiwan'], value='atlantic')
|
580 |
-
|
581 |
-
# Completely redesigned animation function to show track movement clearly
|
582 |
-
def generate_improved_animation(year, typhoon, standard):
|
583 |
-
if not typhoon:
|
584 |
-
return None
|
585 |
-
|
586 |
-
typhoon_id = typhoon.split('(')[-1].strip(')')
|
587 |
-
storm = ibtracs.get_storm(typhoon_id)
|
588 |
-
|
589 |
-
# Create frames that show the growing track
|
590 |
-
frames = []
|
591 |
-
|
592 |
-
# Add frames showing growing track
|
593 |
-
for i in range(len(storm.time)):
|
594 |
-
# Get wind category and color
|
595 |
-
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
596 |
-
|
597 |
-
# Create frame showing path up to current point
|
598 |
-
frame_data = [
|
599 |
-
# Path line up to current point
|
600 |
-
go.Scattergeo(
|
601 |
-
lon=storm.lon[:i+1],
|
602 |
-
lat=storm.lat[:i+1],
|
603 |
-
mode='lines',
|
604 |
-
line=dict(width=2, color='blue'),
|
605 |
-
name="Track"
|
606 |
-
),
|
607 |
-
# Current position
|
608 |
-
go.Scattergeo(
|
609 |
-
lon=[storm.lon[i]],
|
610 |
-
lat=[storm.lat[i]],
|
611 |
-
mode='markers',
|
612 |
-
marker=dict(size=12, color=color),
|
613 |
-
name=f"Current Position",
|
614 |
-
text=f"Time: {storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>Wind: {storm.vmax[i]} kt<br>Category: {category}"
|
615 |
-
)
|
616 |
-
]
|
617 |
-
|
618 |
-
# Add previous positions as smaller markers
|
619 |
-
if i > 0:
|
620 |
-
frame_data.append(
|
621 |
-
go.Scattergeo(
|
622 |
-
lon=storm.lon[:i],
|
623 |
-
lat=storm.lat[:i],
|
624 |
-
mode='markers',
|
625 |
-
marker=dict(size=5, color='rgba(100,100,100,0.5)'),
|
626 |
-
name="Previous Positions",
|
627 |
-
showlegend=False
|
628 |
-
)
|
629 |
-
)
|
630 |
-
|
631 |
-
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
632 |
-
|
633 |
-
# Initial figure showing start point
|
634 |
-
fig = go.Figure(
|
635 |
-
data=[
|
636 |
-
go.Scattergeo(
|
637 |
-
lon=[storm.lon[0]],
|
638 |
-
lat=[storm.lat[0]],
|
639 |
-
mode='markers',
|
640 |
-
marker=dict(size=12, color='green'),
|
641 |
-
name="Starting Position",
|
642 |
-
text=f"Start: {storm.time[0].strftime('%Y-%m-%d %H:%M')}"
|
643 |
-
)
|
644 |
-
],
|
645 |
-
frames=frames
|
646 |
-
)
|
647 |
-
|
648 |
-
# Add category legend
|
649 |
-
if standard == 'atlantic':
|
650 |
-
for cat, details in atlantic_standard.items():
|
651 |
-
fig.add_trace(go.Scattergeo(
|
652 |
-
lon=[None], lat=[None], mode='markers',
|
653 |
-
marker=dict(size=10, color=details['color']),
|
654 |
-
name=cat
|
655 |
-
))
|
656 |
-
else:
|
657 |
-
for cat, details in taiwan_standard.items():
|
658 |
-
fig.add_trace(go.Scattergeo(
|
659 |
-
lon=[None], lat=[None], mode='markers',
|
660 |
-
marker=dict(size=10, color=details['color']),
|
661 |
-
name=cat
|
662 |
-
))
|
663 |
-
|
664 |
-
# Focus map on storm area
|
665 |
-
min_lat, max_lat = min(storm.lat), max(storm.lat)
|
666 |
-
min_lon, max_lon = min(storm.lon), max(storm.lon)
|
667 |
-
lat_padding = (max_lat - min_lat) * 0.3 or 5
|
668 |
-
lon_padding = (max_lon - min_lon) * 0.3 or 5
|
669 |
-
|
670 |
-
# Update layout with better animation controls
|
671 |
-
fig.update_layout(
|
672 |
-
title=f"{year} {storm.name} Typhoon Path",
|
673 |
-
geo=dict(
|
674 |
-
projection_type='natural earth',
|
675 |
-
showland=True,
|
676 |
-
showcoastlines=True,
|
677 |
-
landcolor='rgb(243, 243, 243)',
|
678 |
-
countrycolor='rgb(204, 204, 204)',
|
679 |
-
coastlinecolor='rgb(204, 204, 204)',
|
680 |
-
showocean=True,
|
681 |
-
oceancolor='rgb(230, 230, 255)',
|
682 |
-
lataxis={'range': [min_lat - lat_padding, max_lat + lat_padding]},
|
683 |
-
lonaxis={'range': [min_lon - lon_padding, max_lon + lon_padding]}
|
684 |
-
),
|
685 |
-
updatemenus=[{
|
686 |
-
"buttons": [
|
687 |
-
{
|
688 |
-
"args": [None, {"frame": {"duration": 100, "redraw": True}, "fromcurrent": True, "mode": "immediate"}],
|
689 |
-
"label": "Play",
|
690 |
-
"method": "animate"
|
691 |
-
},
|
692 |
-
{
|
693 |
-
"args": [[None], {"frame": {"duration": 0, "redraw": True}, "mode": "immediate"}],
|
694 |
-
"label": "Pause",
|
695 |
-
"method": "animate"
|
696 |
-
}
|
697 |
-
],
|
698 |
-
"direction": "left",
|
699 |
-
"pad": {"r": 10, "t": 10},
|
700 |
-
"type": "buttons",
|
701 |
-
"x": 0.1,
|
702 |
-
"y": 0
|
703 |
-
}],
|
704 |
-
sliders=[{
|
705 |
-
"active": 0,
|
706 |
-
"yanchor": "top",
|
707 |
-
"xanchor": "left",
|
708 |
-
"currentvalue": {
|
709 |
-
"font": {"size": 12},
|
710 |
-
"prefix": "Time: ",
|
711 |
-
"visible": True,
|
712 |
-
"xanchor": "right"
|
713 |
-
},
|
714 |
-
"pad": {"b": 10, "t": 50},
|
715 |
-
"len": 0.9,
|
716 |
-
"x": 0.1,
|
717 |
-
"y": 0,
|
718 |
-
"steps": [
|
719 |
-
{
|
720 |
-
"args": [[f.name], {
|
721 |
-
"frame": {"duration": 0, "redraw": True},
|
722 |
-
"mode": "immediate"
|
723 |
-
}],
|
724 |
-
"label": storm.time[i].strftime('%m/%d %H:00') if i < len(storm.time) else "",
|
725 |
-
"method": "animate"
|
726 |
-
} for i, f in enumerate(frames)
|
727 |
-
]
|
728 |
-
}],
|
729 |
-
height=700,
|
730 |
-
showlegend=True,
|
731 |
-
legend=dict(
|
732 |
-
yanchor="top",
|
733 |
-
y=0.99,
|
734 |
-
xanchor="left",
|
735 |
-
x=0.01,
|
736 |
-
bgcolor="rgba(255, 255, 255, 0.8)"
|
737 |
-
)
|
738 |
-
)
|
739 |
-
|
740 |
-
return fig
|
741 |
|
742 |
animate_btn = gr.Button("Generate Animation")
|
743 |
path_plot = gr.Plot(label="Typhoon Path Animation", elem_id="animation_plot")
|
744 |
animation_info = gr.Markdown("""
|
745 |
### Animation Instructions
|
746 |
1. Select a year and typhoon from the dropdowns
|
747 |
-
2.
|
748 |
-
3.
|
749 |
-
4. Use the slider to
|
750 |
-
5.
|
751 |
-
6. Colors indicate typhoon intensity according to the selected classification standard
|
752 |
""")
|
753 |
|
754 |
-
# Year dropdown change function
|
755 |
def update_typhoon_options(year):
|
756 |
season = ibtracs.get_season(int(year))
|
757 |
storm_summary = season.summary()
|
@@ -765,15 +708,19 @@ with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
|
765 |
outputs=path_plot
|
766 |
)
|
767 |
|
768 |
-
# Custom CSS for better spacing and
|
769 |
gr.HTML("""
|
770 |
<style>
|
771 |
#tracks_plot, #animation_plot {
|
772 |
height: 700px !important;
|
|
|
773 |
}
|
774 |
.plot-container {
|
775 |
min-height: 600px;
|
776 |
}
|
|
|
|
|
|
|
777 |
</style>
|
778 |
""")
|
779 |
|
|
|
294 |
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
|
295 |
|
296 |
# Path animation function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
def categorize_typhoon_by_standard(wind_speed, standard):
|
298 |
if standard == 'taiwan':
|
299 |
wind_speed_ms = wind_speed * 0.514444
|
|
|
319 |
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
|
320 |
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
321 |
|
322 |
+
def generate_improved_animation(year, typhoon, standard):
|
323 |
+
if not typhoon:
|
324 |
+
return None
|
325 |
+
|
326 |
+
typhoon_id = typhoon.split('(')[-1].strip(')')
|
327 |
+
storm = ibtracs.get_storm(typhoon_id)
|
328 |
+
|
329 |
+
# Create frames for animation
|
330 |
+
frames = []
|
331 |
+
for i in range(len(storm.time)):
|
332 |
+
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
333 |
+
frame_data = [
|
334 |
+
go.Scattergeo(
|
335 |
+
lon=storm.lon[:i+1],
|
336 |
+
lat=storm.lat[:i+1],
|
337 |
+
mode='lines',
|
338 |
+
line=dict(width=2, color='blue'),
|
339 |
+
name="Track",
|
340 |
+
hoverinfo="none"
|
341 |
+
),
|
342 |
+
go.Scattergeo(
|
343 |
+
lon=[storm.lon[i]],
|
344 |
+
lat=[storm.lat[i]],
|
345 |
+
mode='markers',
|
346 |
+
marker=dict(size=12, color=color),
|
347 |
+
name=f"Current Position",
|
348 |
+
text=[f"Time: {storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>Wind: {storm.vmax[i]:.1f} kt<br>Category: {category}"],
|
349 |
+
hoverinfo="text"
|
350 |
+
)
|
351 |
+
]
|
352 |
+
if i > 0:
|
353 |
+
frame_data.append(
|
354 |
+
go.Scattergeo(
|
355 |
+
lon=storm.lon[:i],
|
356 |
+
lat=storm.lat[:i],
|
357 |
+
mode='markers',
|
358 |
+
marker=dict(size=5, color='rgba(100,100,100,0.5)'),
|
359 |
+
name="Previous Positions",
|
360 |
+
hoverinfo="none",
|
361 |
+
showlegend=False
|
362 |
+
)
|
363 |
+
)
|
364 |
+
frames.append(go.Frame(data=frame_data, name=str(i)))
|
365 |
+
|
366 |
+
# Initial figure
|
367 |
+
fig = go.Figure(
|
368 |
+
data=[
|
369 |
+
go.Scattergeo(
|
370 |
+
lon=[storm.lon[0]],
|
371 |
+
lat=[storm.lat[0]],
|
372 |
+
mode='markers',
|
373 |
+
marker=dict(size=12, color='green'),
|
374 |
+
name="Start",
|
375 |
+
text=[f"Start: {storm.time[0].strftime('%Y-%m-%d %H:%M')}"],
|
376 |
+
hoverinfo="text"
|
377 |
+
)
|
378 |
+
],
|
379 |
+
frames=frames
|
380 |
+
)
|
381 |
+
|
382 |
+
# Add category legend
|
383 |
+
standard_dict = atlantic_standard if standard == 'atlantic' else taiwan_standard
|
384 |
+
for cat, details in standard_dict.items():
|
385 |
+
fig.add_trace(go.Scattergeo(
|
386 |
+
lon=[None], lat=[None], mode='markers',
|
387 |
+
marker=dict(size=10, color=details['color']),
|
388 |
+
name=cat,
|
389 |
+
showlegend=True
|
390 |
+
))
|
391 |
+
|
392 |
+
# Map focus
|
393 |
+
min_lat, max_lat = min(storm.lat), max(storm.lat)
|
394 |
+
min_lon, max_lon = min(storm.lon), max(storm.lon)
|
395 |
+
lat_padding = max((max_lat - min_lat) * 0.3, 5)
|
396 |
+
lon_padding = max((max_lon - min_lon) * 0.3, 5)
|
397 |
+
|
398 |
+
# Update layout with animation controls
|
399 |
+
fig.update_layout(
|
400 |
+
title=f"{year} {storm.name} Typhoon Path",
|
401 |
+
geo=dict(
|
402 |
+
projection_type='natural earth',
|
403 |
+
showland=True,
|
404 |
+
showcoastlines=True,
|
405 |
+
landcolor='rgb(243, 243, 243)',
|
406 |
+
countrycolor='rgb(204, 204, 204)',
|
407 |
+
coastlinecolor='rgb(204, 204, 204)',
|
408 |
+
showocean=True,
|
409 |
+
oceancolor='rgb(230, 230, 255)',
|
410 |
+
lataxis={'range': [min_lat - lat_padding, max_lat + lat_padding]},
|
411 |
+
lonaxis={'range': [min_lon - lon_padding, max_lon + lon_padding]}
|
412 |
+
),
|
413 |
+
updatemenus=[{
|
414 |
+
"buttons": [
|
415 |
+
{
|
416 |
+
"args": [None, {"frame": {"duration": 200, "redraw": True},
|
417 |
+
"fromcurrent": True,
|
418 |
+
"transition": {"duration": 0},
|
419 |
+
"mode": "immediate"}],
|
420 |
+
"label": "Play",
|
421 |
+
"method": "animate"
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
425 |
+
"mode": "immediate",
|
426 |
+
"transition": {"duration": 0}}],
|
427 |
+
"label": "Pause",
|
428 |
+
"method": "animate"
|
429 |
+
}
|
430 |
+
],
|
431 |
+
"direction": "left",
|
432 |
+
"pad": {"r": 10, "t": 10},
|
433 |
+
"showactive": True,
|
434 |
+
"type": "buttons",
|
435 |
+
"x": 0.1,
|
436 |
+
"xanchor": "left",
|
437 |
+
"y": 0,
|
438 |
+
"yanchor": "bottom"
|
439 |
+
}],
|
440 |
+
sliders=[{
|
441 |
+
"active": 0,
|
442 |
+
"yanchor": "top",
|
443 |
+
"xanchor": "left",
|
444 |
+
"currentvalue": {
|
445 |
+
"font": {"size": 12},
|
446 |
+
"prefix": "Time: ",
|
447 |
+
"visible": True,
|
448 |
+
"xanchor": "right"
|
449 |
+
},
|
450 |
+
"transition": {"duration": 0},
|
451 |
+
"pad": {"b": 10, "t": 50},
|
452 |
+
"len": 0.9,
|
453 |
+
"x": 0.1,
|
454 |
+
"y": 0,
|
455 |
+
"steps": [
|
456 |
+
{
|
457 |
+
"args": [[str(i)], {"frame": {"duration": 200, "redraw": True},
|
458 |
+
"mode": "immediate",
|
459 |
+
"transition": {"duration": 0}}],
|
460 |
+
"label": storm.time[i].strftime('%m/%d %H:%M') if i < len(storm.time) else "",
|
461 |
+
"method": "animate"
|
462 |
+
} for i in range(len(storm.time))
|
463 |
+
]
|
464 |
+
}],
|
465 |
+
height=700,
|
466 |
+
showlegend=True,
|
467 |
+
legend=dict(
|
468 |
+
yanchor="top",
|
469 |
+
y=0.99,
|
470 |
+
xanchor="left",
|
471 |
+
x=0.01,
|
472 |
+
bgcolor="rgba(255, 255, 255, 0.8)"
|
473 |
+
),
|
474 |
+
# Ensure animation starts automatically
|
475 |
+
autosize=True
|
476 |
+
)
|
477 |
+
|
478 |
+
return fig
|
479 |
+
|
480 |
# Logistic regression functions
|
481 |
def perform_wind_regression(start_year, start_month, end_year, end_month):
|
482 |
start_date = datetime(start_year, start_month, 1)
|
|
|
539 |
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
|
540 |
typhoon_search = gr.Textbox(label="Typhoon Search")
|
541 |
analyze_btn = gr.Button("Generate Tracks")
|
|
|
|
|
542 |
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
|
543 |
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
|
544 |
|
|
|
545 |
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
546 |
start_date = datetime(start_year, start_month, 1)
|
547 |
end_date = datetime(end_year, end_month, 28)
|
|
|
550 |
(merged_data['ISO_TIME'] <= end_date)
|
551 |
]
|
552 |
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
|
|
553 |
if enso_phase != 'all':
|
554 |
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
|
|
|
|
|
555 |
unique_storms = filtered_data['SID'].unique()
|
556 |
count = len(unique_storms)
|
|
|
|
|
557 |
fig = go.Figure()
|
|
|
|
|
558 |
for sid in unique_storms:
|
559 |
storm_data = typhoon_data[typhoon_data['SID'] == sid]
|
560 |
name = storm_data['NAME'].iloc[0] if not pd.isna(storm_data['NAME'].iloc[0]) else "Unnamed"
|
|
|
|
|
561 |
storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
|
562 |
color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
|
|
|
|
|
563 |
fig.add_trace(go.Scattergeo(
|
564 |
+
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
|
|
|
|
|
565 |
name=f"{name} ({storm_data['SEASON'].iloc[0]})",
|
566 |
line=dict(width=1.5, color=color),
|
567 |
hoverinfo="name"
|
568 |
))
|
|
|
|
|
569 |
if typhoon_search:
|
570 |
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
|
571 |
if search_mask.any():
|
572 |
for sid in typhoon_data[search_mask]['SID'].unique():
|
573 |
storm_data = typhoon_data[typhoon_data['SID'] == sid]
|
574 |
fig.add_trace(go.Scattergeo(
|
575 |
+
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
|
|
|
|
|
576 |
name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
|
577 |
line=dict(width=3, color='yellow'),
|
578 |
marker=dict(size=5),
|
579 |
hoverinfo="name"
|
580 |
))
|
|
|
|
|
581 |
fig.update_layout(
|
582 |
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
|
583 |
geo=dict(
|
|
|
594 |
showlegend=True,
|
595 |
height=700
|
596 |
)
|
|
|
|
|
597 |
fig.add_annotation(
|
598 |
x=0.02, y=0.98, xref="paper", yref="paper",
|
599 |
text="Red: El Niño, Blue: La Niña, Green: Neutral",
|
600 |
showarrow=False, align="left",
|
601 |
bgcolor="rgba(255,255,255,0.8)"
|
602 |
)
|
|
|
603 |
return fig, f"Total typhoons displayed: {count}"
|
604 |
|
605 |
analyze_btn.click(
|
|
|
620 |
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
|
621 |
wind_regression_results = gr.Textbox(label="Wind Regression Results")
|
622 |
|
|
|
623 |
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
624 |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
|
625 |
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
|
|
|
643 |
pressure_scatter = gr.Plot(label="Pressure vs ONI")
|
644 |
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
|
645 |
|
|
|
646 |
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
647 |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
|
648 |
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
|
|
|
667 |
slopes_text = gr.Textbox(label="Regression Slopes")
|
668 |
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
|
669 |
|
|
|
670 |
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
671 |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
|
672 |
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
|
|
|
682 |
with gr.Row():
|
683 |
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
|
684 |
typhoon_dropdown = gr.Dropdown(label="Typhoon")
|
685 |
+
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
|
687 |
animate_btn = gr.Button("Generate Animation")
|
688 |
path_plot = gr.Plot(label="Typhoon Path Animation", elem_id="animation_plot")
|
689 |
animation_info = gr.Markdown("""
|
690 |
### Animation Instructions
|
691 |
1. Select a year and typhoon from the dropdowns
|
692 |
+
2. Choose a classification standard (Atlantic or Taiwan)
|
693 |
+
3. Click "Generate Animation"
|
694 |
+
4. Use the "Play" button to start the animation or the slider to navigate through the typhoon's path
|
695 |
+
5. Colors indicate typhoon intensity according to the selected standard
|
|
|
696 |
""")
|
697 |
|
|
|
698 |
def update_typhoon_options(year):
|
699 |
season = ibtracs.get_season(int(year))
|
700 |
storm_summary = season.summary()
|
|
|
708 |
outputs=path_plot
|
709 |
)
|
710 |
|
711 |
+
# Custom CSS for better spacing and visibility
|
712 |
gr.HTML("""
|
713 |
<style>
|
714 |
#tracks_plot, #animation_plot {
|
715 |
height: 700px !important;
|
716 |
+
width: 100%;
|
717 |
}
|
718 |
.plot-container {
|
719 |
min-height: 600px;
|
720 |
}
|
721 |
+
.gr-plotly {
|
722 |
+
width: 100% !important;
|
723 |
+
}
|
724 |
</style>
|
725 |
""")
|
726 |
|