Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -116,8 +116,13 @@ regions = {
|
|
116 |
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
|
117 |
}
|
118 |
# Add these functions near the top of the file after imports
|
|
|
|
|
|
|
|
|
|
|
119 |
def generate_sample_oni_data():
|
120 |
-
"""Generate sample ONI data
|
121 |
years = range(1950, 2024)
|
122 |
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
123 |
data = {'Year': list(years)}
|
@@ -129,17 +134,17 @@ def generate_sample_oni_data():
|
|
129 |
|
130 |
df = pd.DataFrame(data)
|
131 |
df.to_csv(ONI_DATA_PATH, index=False)
|
|
|
132 |
return df
|
133 |
|
134 |
def generate_sample_typhoon_data():
|
135 |
-
"""Generate sample typhoon data
|
136 |
# Create sample data with realistic values
|
137 |
np.random.seed(42)
|
138 |
|
139 |
# Generate 100 sample typhoons
|
140 |
n_typhoons = 100
|
141 |
n_points_per_typhoon = 20
|
142 |
-
total_points = n_typhoons * n_points_per_typhoon
|
143 |
|
144 |
data = {
|
145 |
'SID': [],
|
@@ -197,73 +202,8 @@ def generate_sample_typhoon_data():
|
|
197 |
|
198 |
df = pd.DataFrame(data)
|
199 |
df.to_csv(TYPHOON_DATA_PATH, index=False)
|
|
|
200 |
return df
|
201 |
-
|
202 |
-
# Modify load_data function to handle missing data
|
203 |
-
def load_data(oni_path, typhoon_path):
|
204 |
-
oni_data = pd.DataFrame()
|
205 |
-
typhoon_data = pd.DataFrame()
|
206 |
-
|
207 |
-
# Try to load ONI data, generate sample if not found
|
208 |
-
if not os.path.exists(oni_path):
|
209 |
-
logging.warning(f"ONI data file not found: {oni_path}")
|
210 |
-
logging.info("Generating sample ONI data")
|
211 |
-
oni_data = generate_sample_oni_data()
|
212 |
-
else:
|
213 |
-
try:
|
214 |
-
oni_data = pd.read_csv(oni_path)
|
215 |
-
except Exception as e:
|
216 |
-
logging.error(f"Error loading ONI data: {e}")
|
217 |
-
logging.info("Generating sample ONI data")
|
218 |
-
oni_data = generate_sample_oni_data()
|
219 |
-
|
220 |
-
# Try to load Typhoon data, generate sample if not found
|
221 |
-
if not os.path.exists(typhoon_path):
|
222 |
-
logging.warning(f"Typhoon data file not found: {typhoon_path}")
|
223 |
-
logging.info("Generating sample typhoon data")
|
224 |
-
typhoon_data = generate_sample_typhoon_data()
|
225 |
-
else:
|
226 |
-
try:
|
227 |
-
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
|
228 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
229 |
-
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
230 |
-
except Exception as e:
|
231 |
-
logging.error(f"Error loading typhoon data: {e}")
|
232 |
-
logging.info("Generating sample typhoon data")
|
233 |
-
typhoon_data = generate_sample_typhoon_data()
|
234 |
-
|
235 |
-
return oni_data, typhoon_data
|
236 |
-
|
237 |
-
# Also update the load_ibtracs_data function to be more robust
|
238 |
-
def load_ibtracs_data():
|
239 |
-
ibtracs_data = {}
|
240 |
-
for basin, filename in BASIN_FILES.items():
|
241 |
-
local_path = os.path.join(DATA_PATH, filename)
|
242 |
-
try:
|
243 |
-
if not os.path.exists(local_path):
|
244 |
-
logging.info(f"Downloading {basin} basin file...")
|
245 |
-
try:
|
246 |
-
response = requests.get(IBTRACS_BASE_URL+filename)
|
247 |
-
response.raise_for_status()
|
248 |
-
with open(local_path, 'wb') as f:
|
249 |
-
f.write(response.content)
|
250 |
-
logging.info(f"Downloaded {basin} basin file.")
|
251 |
-
except Exception as e:
|
252 |
-
logging.error(f"Failed to download {basin} basin file: {e}")
|
253 |
-
continue
|
254 |
-
|
255 |
-
logging.info(f"--> Starting to read in IBTrACS data for basin {basin}")
|
256 |
-
try:
|
257 |
-
ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path)
|
258 |
-
logging.info(f"--> Completed reading in IBTrACS data for basin {basin}")
|
259 |
-
ibtracs_data[basin] = ds
|
260 |
-
except Exception as e:
|
261 |
-
logging.warning(f"Skipping basin {basin} due to error: {e}")
|
262 |
-
ibtracs_data[basin] = None
|
263 |
-
except Exception as e:
|
264 |
-
logging.error(f"Error processing basin {basin}: {e}")
|
265 |
-
ibtracs_data[basin] = None
|
266 |
-
return ibtracs_data
|
267 |
# -----------------------------
|
268 |
# ONI and Typhoon Data Functions
|
269 |
# -----------------------------
|
@@ -308,18 +248,16 @@ def update_oni_data():
|
|
308 |
os.remove(temp_file)
|
309 |
|
310 |
def load_data(oni_path, typhoon_path):
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
logging.error(f"Error loading data: {e}")
|
322 |
-
return pd.DataFrame(), pd.DataFrame()
|
323 |
|
324 |
def process_oni_data(oni_data):
|
325 |
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
|
|
116 |
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
|
117 |
}
|
118 |
# Add these functions near the top of the file after imports
|
119 |
+
# After your imports section but before any other code, add:
|
120 |
+
|
121 |
+
# -----------------------------
|
122 |
+
# Sample Data Generation
|
123 |
+
# -----------------------------
|
124 |
def generate_sample_oni_data():
|
125 |
+
"""Generate sample ONI data"""
|
126 |
years = range(1950, 2024)
|
127 |
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
128 |
data = {'Year': list(years)}
|
|
|
134 |
|
135 |
df = pd.DataFrame(data)
|
136 |
df.to_csv(ONI_DATA_PATH, index=False)
|
137 |
+
logging.info(f"Generated sample ONI data and saved to {ONI_DATA_PATH}")
|
138 |
return df
|
139 |
|
140 |
def generate_sample_typhoon_data():
|
141 |
+
"""Generate sample typhoon data"""
|
142 |
# Create sample data with realistic values
|
143 |
np.random.seed(42)
|
144 |
|
145 |
# Generate 100 sample typhoons
|
146 |
n_typhoons = 100
|
147 |
n_points_per_typhoon = 20
|
|
|
148 |
|
149 |
data = {
|
150 |
'SID': [],
|
|
|
202 |
|
203 |
df = pd.DataFrame(data)
|
204 |
df.to_csv(TYPHOON_DATA_PATH, index=False)
|
205 |
+
logging.info(f"Generated sample typhoon data and saved to {TYPHOON_DATA_PATH}")
|
206 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
# -----------------------------
|
208 |
# ONI and Typhoon Data Functions
|
209 |
# -----------------------------
|
|
|
248 |
os.remove(temp_file)
|
249 |
|
250 |
def load_data(oni_path, typhoon_path):
|
251 |
+
# Always generate sample data for Huggingface Spaces
|
252 |
+
logging.info("Generating sample data for Huggingface Spaces")
|
253 |
+
oni_data = generate_sample_oni_data()
|
254 |
+
typhoon_data = generate_sample_typhoon_data()
|
255 |
+
|
256 |
+
# Convert ISO_TIME to datetime
|
257 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
258 |
+
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
259 |
+
|
260 |
+
return oni_data, typhoon_data
|
|
|
|
|
261 |
|
262 |
def process_oni_data(oni_data):
|
263 |
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|