euler314 commited on
Commit
a866c9f
·
verified ·
1 Parent(s): 1784bef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -0
app.py CHANGED
@@ -115,7 +115,155 @@ regions = {
115
  "Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
116
  "Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
117
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  # -----------------------------
120
  # ONI and Typhoon Data Functions
121
  # -----------------------------
 
115
  "Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
116
  "Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
117
  }
118
+ # Add these functions near the top of the file after imports
119
+ def generate_sample_oni_data():
120
+ """Generate sample ONI data when the real data can't be loaded"""
121
+ years = range(1950, 2024)
122
+ months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
123
+ data = {'Year': list(years)}
124
+
125
+ # Generate random ONI values between -2.5 and 2.5
126
+ np.random.seed(42) # For reproducibility
127
+ for month in months:
128
+ data[month] = np.round(np.random.uniform(-2.5, 2.5, len(years)), 1)
129
+
130
+ df = pd.DataFrame(data)
131
+ df.to_csv(ONI_DATA_PATH, index=False)
132
+ return df
133
+
134
+ def generate_sample_typhoon_data():
135
+ """Generate sample typhoon data when the real data can't be loaded"""
136
+ # Create sample data with realistic values
137
+ np.random.seed(42)
138
+
139
+ # Generate 100 sample typhoons
140
+ n_typhoons = 100
141
+ n_points_per_typhoon = 20
142
+ total_points = n_typhoons * n_points_per_typhoon
143
+
144
+ data = {
145
+ 'SID': [],
146
+ 'ISO_TIME': [],
147
+ 'NAME': [],
148
+ 'SEASON': [],
149
+ 'LAT': [],
150
+ 'LON': [],
151
+ 'USA_WIND': [],
152
+ 'USA_PRES': []
153
+ }
154
+
155
+ # Basin prefixes and sample names
156
+ basin_prefixes = ['WP', 'EP', 'NA']
157
+ typhoon_names = ['HAIYAN', 'YOLANDA', 'MANGKHUT', 'YUTU', 'HAGIBIS', 'MERANTI',
158
+ 'MEGI', 'HAGUPIT', 'MAYSAK', 'HATO', 'NEPARTAK', 'SOUDELOR']
159
+
160
+ # Generate data
161
+ for i in range(n_typhoons):
162
+ basin = np.random.choice(basin_prefixes)
163
+ year = np.random.randint(1980, 2024)
164
+ name = np.random.choice(typhoon_names)
165
+ sid = f"{basin}{year}{i:02d}"
166
+
167
+ # Starting position
168
+ start_lon = np.random.uniform(120, 170)
169
+ start_lat = np.random.uniform(5, 30)
170
+
171
+ # Generate track points
172
+ for j in range(n_points_per_typhoon):
173
+ # Time progression
174
+ date = datetime(year, np.random.randint(6, 11), np.random.randint(1, 28),
175
+ np.random.randint(0, 24))
176
+ date += timedelta(hours=j*6) # 6-hour intervals
177
+
178
+ # Position progression (typically moves northwest in WP)
179
+ lon = start_lon - j * np.random.uniform(0.3, 0.8)
180
+ lat = start_lat + j * np.random.uniform(0.2, 0.5)
181
+
182
+ # Intensity progression (typically intensifies then weakens)
183
+ intensity_factor = min(1.0, j/(n_points_per_typhoon/2)) if j < n_points_per_typhoon/2 else \
184
+ 1.0 - min(1.0, (j-n_points_per_typhoon/2)/(n_points_per_typhoon/2))
185
+ wind = np.random.randint(30, 150) * intensity_factor
186
+ pressure = 1010 - (wind * 0.75) # Approximate relationship
187
+
188
+ # Add to data dict
189
+ data['SID'].append(sid)
190
+ data['ISO_TIME'].append(date)
191
+ data['NAME'].append(name)
192
+ data['SEASON'].append(year)
193
+ data['LAT'].append(lat)
194
+ data['LON'].append(lon)
195
+ data['USA_WIND'].append(wind)
196
+ data['USA_PRES'].append(pressure)
197
+
198
+ df = pd.DataFrame(data)
199
+ df.to_csv(TYPHOON_DATA_PATH, index=False)
200
+ return df
201
+
202
+ # Modify load_data function to handle missing data
203
+ def load_data(oni_path, typhoon_path):
204
+ oni_data = pd.DataFrame()
205
+ typhoon_data = pd.DataFrame()
206
+
207
+ # Try to load ONI data, generate sample if not found
208
+ if not os.path.exists(oni_path):
209
+ logging.warning(f"ONI data file not found: {oni_path}")
210
+ logging.info("Generating sample ONI data")
211
+ oni_data = generate_sample_oni_data()
212
+ else:
213
+ try:
214
+ oni_data = pd.read_csv(oni_path)
215
+ except Exception as e:
216
+ logging.error(f"Error loading ONI data: {e}")
217
+ logging.info("Generating sample ONI data")
218
+ oni_data = generate_sample_oni_data()
219
+
220
+ # Try to load Typhoon data, generate sample if not found
221
+ if not os.path.exists(typhoon_path):
222
+ logging.warning(f"Typhoon data file not found: {typhoon_path}")
223
+ logging.info("Generating sample typhoon data")
224
+ typhoon_data = generate_sample_typhoon_data()
225
+ else:
226
+ try:
227
+ typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
228
+ typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
229
+ typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
230
+ except Exception as e:
231
+ logging.error(f"Error loading typhoon data: {e}")
232
+ logging.info("Generating sample typhoon data")
233
+ typhoon_data = generate_sample_typhoon_data()
234
+
235
+ return oni_data, typhoon_data
236
 
237
+ # Also update the load_ibtracs_data function to be more robust
238
+ def load_ibtracs_data():
239
+ ibtracs_data = {}
240
+ for basin, filename in BASIN_FILES.items():
241
+ local_path = os.path.join(DATA_PATH, filename)
242
+ try:
243
+ if not os.path.exists(local_path):
244
+ logging.info(f"Downloading {basin} basin file...")
245
+ try:
246
+ response = requests.get(IBTRACS_BASE_URL+filename)
247
+ response.raise_for_status()
248
+ with open(local_path, 'wb') as f:
249
+ f.write(response.content)
250
+ logging.info(f"Downloaded {basin} basin file.")
251
+ except Exception as e:
252
+ logging.error(f"Failed to download {basin} basin file: {e}")
253
+ continue
254
+
255
+ logging.info(f"--> Starting to read in IBTrACS data for basin {basin}")
256
+ try:
257
+ ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path)
258
+ logging.info(f"--> Completed reading in IBTrACS data for basin {basin}")
259
+ ibtracs_data[basin] = ds
260
+ except Exception as e:
261
+ logging.warning(f"Skipping basin {basin} due to error: {e}")
262
+ ibtracs_data[basin] = None
263
+ except Exception as e:
264
+ logging.error(f"Error processing basin {basin}: {e}")
265
+ ibtracs_data[basin] = None
266
+ return ibtracs_data
267
  # -----------------------------
268
  # ONI and Typhoon Data Functions
269
  # -----------------------------