Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -115,7 +115,155 @@ regions = {
|
|
115 |
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
|
116 |
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
|
117 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# -----------------------------
|
120 |
# ONI and Typhoon Data Functions
|
121 |
# -----------------------------
|
|
|
115 |
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
|
116 |
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
|
117 |
}
|
118 |
+
# Add these functions near the top of the file after imports
|
119 |
+
def generate_sample_oni_data():
|
120 |
+
"""Generate sample ONI data when the real data can't be loaded"""
|
121 |
+
years = range(1950, 2024)
|
122 |
+
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
123 |
+
data = {'Year': list(years)}
|
124 |
+
|
125 |
+
# Generate random ONI values between -2.5 and 2.5
|
126 |
+
np.random.seed(42) # For reproducibility
|
127 |
+
for month in months:
|
128 |
+
data[month] = np.round(np.random.uniform(-2.5, 2.5, len(years)), 1)
|
129 |
+
|
130 |
+
df = pd.DataFrame(data)
|
131 |
+
df.to_csv(ONI_DATA_PATH, index=False)
|
132 |
+
return df
|
133 |
+
|
134 |
+
def generate_sample_typhoon_data():
|
135 |
+
"""Generate sample typhoon data when the real data can't be loaded"""
|
136 |
+
# Create sample data with realistic values
|
137 |
+
np.random.seed(42)
|
138 |
+
|
139 |
+
# Generate 100 sample typhoons
|
140 |
+
n_typhoons = 100
|
141 |
+
n_points_per_typhoon = 20
|
142 |
+
total_points = n_typhoons * n_points_per_typhoon
|
143 |
+
|
144 |
+
data = {
|
145 |
+
'SID': [],
|
146 |
+
'ISO_TIME': [],
|
147 |
+
'NAME': [],
|
148 |
+
'SEASON': [],
|
149 |
+
'LAT': [],
|
150 |
+
'LON': [],
|
151 |
+
'USA_WIND': [],
|
152 |
+
'USA_PRES': []
|
153 |
+
}
|
154 |
+
|
155 |
+
# Basin prefixes and sample names
|
156 |
+
basin_prefixes = ['WP', 'EP', 'NA']
|
157 |
+
typhoon_names = ['HAIYAN', 'YOLANDA', 'MANGKHUT', 'YUTU', 'HAGIBIS', 'MERANTI',
|
158 |
+
'MEGI', 'HAGUPIT', 'MAYSAK', 'HATO', 'NEPARTAK', 'SOUDELOR']
|
159 |
+
|
160 |
+
# Generate data
|
161 |
+
for i in range(n_typhoons):
|
162 |
+
basin = np.random.choice(basin_prefixes)
|
163 |
+
year = np.random.randint(1980, 2024)
|
164 |
+
name = np.random.choice(typhoon_names)
|
165 |
+
sid = f"{basin}{year}{i:02d}"
|
166 |
+
|
167 |
+
# Starting position
|
168 |
+
start_lon = np.random.uniform(120, 170)
|
169 |
+
start_lat = np.random.uniform(5, 30)
|
170 |
+
|
171 |
+
# Generate track points
|
172 |
+
for j in range(n_points_per_typhoon):
|
173 |
+
# Time progression
|
174 |
+
date = datetime(year, np.random.randint(6, 11), np.random.randint(1, 28),
|
175 |
+
np.random.randint(0, 24))
|
176 |
+
date += timedelta(hours=j*6) # 6-hour intervals
|
177 |
+
|
178 |
+
# Position progression (typically moves northwest in WP)
|
179 |
+
lon = start_lon - j * np.random.uniform(0.3, 0.8)
|
180 |
+
lat = start_lat + j * np.random.uniform(0.2, 0.5)
|
181 |
+
|
182 |
+
# Intensity progression (typically intensifies then weakens)
|
183 |
+
intensity_factor = min(1.0, j/(n_points_per_typhoon/2)) if j < n_points_per_typhoon/2 else \
|
184 |
+
1.0 - min(1.0, (j-n_points_per_typhoon/2)/(n_points_per_typhoon/2))
|
185 |
+
wind = np.random.randint(30, 150) * intensity_factor
|
186 |
+
pressure = 1010 - (wind * 0.75) # Approximate relationship
|
187 |
+
|
188 |
+
# Add to data dict
|
189 |
+
data['SID'].append(sid)
|
190 |
+
data['ISO_TIME'].append(date)
|
191 |
+
data['NAME'].append(name)
|
192 |
+
data['SEASON'].append(year)
|
193 |
+
data['LAT'].append(lat)
|
194 |
+
data['LON'].append(lon)
|
195 |
+
data['USA_WIND'].append(wind)
|
196 |
+
data['USA_PRES'].append(pressure)
|
197 |
+
|
198 |
+
df = pd.DataFrame(data)
|
199 |
+
df.to_csv(TYPHOON_DATA_PATH, index=False)
|
200 |
+
return df
|
201 |
+
|
202 |
+
# Modify load_data function to handle missing data
|
203 |
+
def load_data(oni_path, typhoon_path):
|
204 |
+
oni_data = pd.DataFrame()
|
205 |
+
typhoon_data = pd.DataFrame()
|
206 |
+
|
207 |
+
# Try to load ONI data, generate sample if not found
|
208 |
+
if not os.path.exists(oni_path):
|
209 |
+
logging.warning(f"ONI data file not found: {oni_path}")
|
210 |
+
logging.info("Generating sample ONI data")
|
211 |
+
oni_data = generate_sample_oni_data()
|
212 |
+
else:
|
213 |
+
try:
|
214 |
+
oni_data = pd.read_csv(oni_path)
|
215 |
+
except Exception as e:
|
216 |
+
logging.error(f"Error loading ONI data: {e}")
|
217 |
+
logging.info("Generating sample ONI data")
|
218 |
+
oni_data = generate_sample_oni_data()
|
219 |
+
|
220 |
+
# Try to load Typhoon data, generate sample if not found
|
221 |
+
if not os.path.exists(typhoon_path):
|
222 |
+
logging.warning(f"Typhoon data file not found: {typhoon_path}")
|
223 |
+
logging.info("Generating sample typhoon data")
|
224 |
+
typhoon_data = generate_sample_typhoon_data()
|
225 |
+
else:
|
226 |
+
try:
|
227 |
+
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
|
228 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
229 |
+
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
230 |
+
except Exception as e:
|
231 |
+
logging.error(f"Error loading typhoon data: {e}")
|
232 |
+
logging.info("Generating sample typhoon data")
|
233 |
+
typhoon_data = generate_sample_typhoon_data()
|
234 |
+
|
235 |
+
return oni_data, typhoon_data
|
236 |
|
237 |
+
# Also update the load_ibtracs_data function to be more robust
|
238 |
+
def load_ibtracs_data():
|
239 |
+
ibtracs_data = {}
|
240 |
+
for basin, filename in BASIN_FILES.items():
|
241 |
+
local_path = os.path.join(DATA_PATH, filename)
|
242 |
+
try:
|
243 |
+
if not os.path.exists(local_path):
|
244 |
+
logging.info(f"Downloading {basin} basin file...")
|
245 |
+
try:
|
246 |
+
response = requests.get(IBTRACS_BASE_URL+filename)
|
247 |
+
response.raise_for_status()
|
248 |
+
with open(local_path, 'wb') as f:
|
249 |
+
f.write(response.content)
|
250 |
+
logging.info(f"Downloaded {basin} basin file.")
|
251 |
+
except Exception as e:
|
252 |
+
logging.error(f"Failed to download {basin} basin file: {e}")
|
253 |
+
continue
|
254 |
+
|
255 |
+
logging.info(f"--> Starting to read in IBTrACS data for basin {basin}")
|
256 |
+
try:
|
257 |
+
ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path)
|
258 |
+
logging.info(f"--> Completed reading in IBTrACS data for basin {basin}")
|
259 |
+
ibtracs_data[basin] = ds
|
260 |
+
except Exception as e:
|
261 |
+
logging.warning(f"Skipping basin {basin} due to error: {e}")
|
262 |
+
ibtracs_data[basin] = None
|
263 |
+
except Exception as e:
|
264 |
+
logging.error(f"Error processing basin {basin}: {e}")
|
265 |
+
ibtracs_data[basin] = None
|
266 |
+
return ibtracs_data
|
267 |
# -----------------------------
|
268 |
# ONI and Typhoon Data Functions
|
269 |
# -----------------------------
|