Spaces:
Runtime error
Runtime error
File size: 9,927 Bytes
a32ba3c 371710a a32ba3c 21537e2 43cdd6d b8028b2 cdd73b6 a32ba3c cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 abdadbe cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 ee0bad3 cdd73b6 43cdd6d cdd73b6 ee0bad3 43cdd6d ee0bad3 cdd73b6 ee0bad3 cdd73b6 e6a0986 ee0bad3 e6a0986 ee0bad3 cdd73b6 ee0bad3 abdadbe 43cdd6d ee0bad3 43cdd6d cdd73b6 43cdd6d e6a0986 ee0bad3 43cdd6d ee0bad3 43cdd6d cdd73b6 ee0bad3 e6a0986 ee0bad3 abdadbe ee0bad3 e6a0986 a32ba3c ee0bad3 43cdd6d ee0bad3 43cdd6d 0f926c0 43cdd6d ee0bad3 e6a0986 54430e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from transformers.pipelines.image_segmentation import Predictions
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
import unidecode, re, unicodedata
from bs4 import BeautifulSoup
from urllib.request import urlopen
from urllib.parse import urlparse
from sklearn.metrics import confusion_matrix, accuracy_score
import torch.nn.functional as F
import gradio as gr
import torch
import nltk
import json
def check_by_url(txt_url):
parsed_url = urlparse(txt_url)
url = (f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/")
print(url)
new_data = []
page = urlopen(url=url).read().decode("utf-8")
soup = BeautifulSoup(page, "html.parser")
title = soup.find("title").get_text()
# remove punctuations from title
def remove_punctuation(title):
punctuationfree = "".join([i for i in title if i not in string.punctuation])
return punctuationfree
css_class_to_remove = ("dp-highlighter") # Replace with the CSS class you want to remove
# Find <div> tags with the specified CSS class and remove their content
div_tags = soup.find_all(["code", "pre"])
for div_tag in div_tags:
div_tag.clear()
div_tags = soup.find_all("div", class_=css_class_to_remove)
for div_tag in div_tags:
div_tag.clear()
# Fetch content of remaining tags
content_with_style = ""
p_tags_with_style = soup.find_all("p", style=True)
for p_tag in p_tags_with_style:
p_content = re.sub(r"\n", "", p_tag.get_text())
content_with_style += p_content
# Fetch content of <p> tags without style
content_without_style = ""
p_tags_without_style = soup.find_all("p", style=False)
for p_tag in p_tags_without_style:
p_content = re.sub(r"\n", "", p_tag.get_text())
content_without_style += p_content
# Replace Unicode characters in the content and remove duplicates
normalized_content_with_style = re.sub(r"\s+", " ", content_with_style) # Remove extra spaces
normalized_content_with_style = normalized_content_with_style.replace("\r", "") # Replace '\r' characters
normalized_content_with_style = unicodedata.normalize("NFKD", normalized_content_with_style)
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
normalized_content_without_style = re.sub(r"\s+", " ", content_without_style) # Remove extra spaces
normalized_content_without_style = normalized_content_without_style.replace("\r", "") # Replace '\r' characters
normalized_content_without_style = unicodedata.normalize("NFKD", normalized_content_without_style)
normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
normalized_content_with_style += normalized_content_without_style
new_data = {"title": title, "content": normalized_content_with_style}
# return new_data
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
label_mapping = {1: "SFW", 0: "NSFW"}
test_encodings = tokenizer.encode_plus(
title,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
model = model.to(device)
model.eval()
outputs = model(test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
predicted_label_title = label_mapping[predicted_labels.item()]
test_encodings = tokenizer.encode_plus(
normalized_content_with_style,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt",
)
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
outputs = model(test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
predicted_label_content = label_mapping[predicted_labels.item()]
return (
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
#new1,
)
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
def predict_2(txt_url, normalized_content_with_style):
(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
) = (None, None, None, None, None)
predicted_label_text, confidence_score_text = None, None
if txt_url.startswith("http://") or txt_url.startswith("https://"):
(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
) = check_by_url(txt_url)
elif txt_url.startswith(""):
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
test_encodings = tokenizer.encode_plus(
normalized_content_with_style,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt",
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
model = model.to(device)
model.eval()
outputs = model(test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_score_text = torch.max(probabilities, dim=1).values.tolist()
predicted_label_text = label_mapping[predicted_labels.item()]
return (
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
predicted_label_text,
confidence_score_text,
#new,
)
def word_by_word(txt_url, normalized_content_with_style):
if txt_url.startswith("http://") or txt_url.startswith("https://") or txt_url.startswith(""):
(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
predicted_label_text,
confidence_score_text,
) = predict_2(txt_url, normalized_content_with_style)
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
new_word={}
content_words =[]
words_2 =[]
if predicted_label_content=="NSFW" or predicted_label_text=="NSFW":
if txt_url.startswith("http://") or txt_url.startswith("https://"):
content_words = new_data['content'].split()
else:
words_2 = normalized_content_with_style.split()
results = []
for word in content_words or words_2 :
encoding = tokenizer.encode_plus(
word,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
probabilities = F.softmax(logits, dim=1)
predicted_label = torch.argmax(logits, dim=1).item()
#label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:False
predicted_label_word = label_mapping[predicted_label]
confidence_score_word = torch.max(probabilities, dim=1).values.item()
#new_word={}
if predicted_label_word=="NSFW":
result = {"Word": word, "Label": predicted_label_word, "Confidence": confidence_score_word}
results.append(result)
new_word = json.dumps(results)
return(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
predicted_label_text,
confidence_score_text,
new_word,
)
demo = gr.Interface(
fn=word_by_word,
inputs=[
gr.inputs.Textbox(label="URL", placeholder="Enter URL"),
gr.inputs.Textbox(label="Text", placeholder="Enter Text"),
],
outputs=[
gr.outputs.Textbox(label="Title_prediction"),
gr.outputs.Textbox(label="Title_confidence_score"),
gr.outputs.Textbox(label="Content_prediction"),
gr.outputs.Textbox(label="Content_confidence_score"),
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
gr.outputs.Textbox(label="Text_prediction_score"),
gr.outputs.Textbox(label="Text_confidence_score"),
gr.outputs.Textbox(label="word-by-word").style(show_copy_button=True),
],
)
demo.launch() |