Spaces:
Runtime error
Runtime error
Commit
·
a32ba3c
1
Parent(s):
e981d10
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.pipelines.image_segmentation import Predictions
|
| 2 |
+
import unidecode, re, unicodedata
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
from urllib.request import urlopen
|
| 5 |
+
from urllib.parse import urlparse
|
| 6 |
+
from sklearn.metrics import confusion_matrix, accuracy_score
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
def check_by_url(txt_url):
|
| 11 |
+
#txt_url = "https://www.c-sharpcorner.com/article/how-to-add-multimedia-content-with-html/default.txt"
|
| 12 |
+
parsed_url = urlparse(txt_url)
|
| 13 |
+
url = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/"
|
| 14 |
+
print(url)
|
| 15 |
+
|
| 16 |
+
new_data =[]
|
| 17 |
+
page = urlopen(url=url).read().decode("utf-8")
|
| 18 |
+
soup = BeautifulSoup(page, 'html.parser')
|
| 19 |
+
title = soup.find('title').get_text()
|
| 20 |
+
|
| 21 |
+
css_class_to_remove = "dp-highlighter" # Replace with the CSS class you want to remove
|
| 22 |
+
#Find <div> tags with the specified CSS class and remove their content
|
| 23 |
+
div_tags = soup.find_all(['code', 'pre'])
|
| 24 |
+
for div_tag in div_tags:
|
| 25 |
+
div_tag.clear()
|
| 26 |
+
|
| 27 |
+
div_tags = soup.find_all('div', class_=css_class_to_remove)
|
| 28 |
+
for div_tag in div_tags:
|
| 29 |
+
div_tag.clear()
|
| 30 |
+
|
| 31 |
+
# Fetch content of remaining tags
|
| 32 |
+
content_with_style = ""
|
| 33 |
+
p_tags_with_style = soup.find_all('p', style=True)
|
| 34 |
+
for p_tag in p_tags_with_style:
|
| 35 |
+
p_content = re.sub(r'\n', '', p_tag.get_text())
|
| 36 |
+
content_with_style += p_content
|
| 37 |
+
|
| 38 |
+
# Fetch content of <p> tags without style
|
| 39 |
+
content_without_style = ""
|
| 40 |
+
p_tags_without_style = soup.find_all('p', style=False)
|
| 41 |
+
for p_tag in p_tags_without_style:
|
| 42 |
+
p_content = re.sub(r'\n', '', p_tag.get_text())
|
| 43 |
+
content_without_style += p_content
|
| 44 |
+
|
| 45 |
+
# Replace Unicode characters in the content and remove duplicates
|
| 46 |
+
normalized_content_with_style = re.sub(r'\s+', ' ', content_with_style) # Remove extra spaces
|
| 47 |
+
normalized_content_with_style = normalized_content_with_style.replace('\r', '') # Replace '\r' characters
|
| 48 |
+
normalized_content_with_style = unicodedata.normalize('NFKD', normalized_content_with_style)
|
| 49 |
+
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
|
| 50 |
+
|
| 51 |
+
normalized_content_without_style = re.sub(r'\s+', ' ', content_without_style) # Remove extra spaces
|
| 52 |
+
normalized_content_without_style = normalized_content_without_style.replace('\r', '') # Replace '\r' characters
|
| 53 |
+
normalized_content_without_style = unicodedata.normalize('NFKD', normalized_content_without_style)
|
| 54 |
+
normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
|
| 55 |
+
|
| 56 |
+
normalized_content_with_style += normalized_content_without_style
|
| 57 |
+
new_data = {"title": title, "content": normalized_content_with_style}
|
| 58 |
+
|
| 59 |
+
model = DistilBertForSequenceClassification.from_pretrained(Save_model)
|
| 60 |
+
tokenizer = DistilBertTokenizer.from_pretrained(Save_model)
|
| 61 |
+
|
| 62 |
+
test_encodings = tokenizer.encode_plus(
|
| 63 |
+
title,
|
| 64 |
+
truncation=True,
|
| 65 |
+
padding=True,
|
| 66 |
+
max_length=512,
|
| 67 |
+
return_tensors="pt"
|
| 68 |
+
)
|
| 69 |
+
model1=[]
|
| 70 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 71 |
+
test_input_ids = test_encodings["input_ids"].to(device)
|
| 72 |
+
test_attention_mask = test_encodings["attention_mask"].to(device)
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
model1= model.to(device)
|
| 75 |
+
model1.eval()
|
| 76 |
+
outputs= model1( test_input_ids, attention_mask=test_attention_mask)
|
| 77 |
+
logits = outputs.logits
|
| 78 |
+
predicted_labels = torch.argmax(logits, dim=1)
|
| 79 |
+
probabilities = F.softmax(logits, dim=1)
|
| 80 |
+
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
|
| 81 |
+
predicted_labels = torch.argmax(outputs.logits, dim=1)
|
| 82 |
+
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
| 83 |
+
predicted_label_title = label_mapping[predicted_labels.item()]
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
test_encodings = tokenizer.encode_plus(
|
| 87 |
+
normalized_content_with_style,
|
| 88 |
+
truncation=True,
|
| 89 |
+
padding=True,
|
| 90 |
+
max_length=512,
|
| 91 |
+
return_tensors="pt"
|
| 92 |
+
)
|
| 93 |
+
model1=[]
|
| 94 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 95 |
+
test_input_ids = test_encodings["input_ids"].to(device)
|
| 96 |
+
test_attention_mask = test_encodings["attention_mask"].to(device)
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
model1= model.to(device)
|
| 99 |
+
model1.eval()
|
| 100 |
+
outputs= model1( test_input_ids, attention_mask=test_attention_mask)
|
| 101 |
+
logits = outputs.logits
|
| 102 |
+
predicted_labels = torch.argmax(logits, dim=1)
|
| 103 |
+
probabilities = F.softmax(logits, dim=1)
|
| 104 |
+
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
|
| 105 |
+
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
| 106 |
+
predicted_label_content = label_mapping[predicted_labels.item()]
|
| 107 |
+
|
| 108 |
+
return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
|
| 109 |
+
|
| 110 |
+
def predict_2( url):
|
| 111 |
+
predicted_label_title, confidence_score_title,predicted_label_content, confidence_scores_content, new_data = check_by_url(url)
|
| 112 |
+
return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
|
| 113 |
+
|
| 114 |
+
demo = gr.Interface(
|
| 115 |
+
fn=predict_2,
|
| 116 |
+
inputs= [
|
| 117 |
+
gr.inputs.Textbox(label="Enter URL"),
|
| 118 |
+
|
| 119 |
+
],
|
| 120 |
+
outputs= [
|
| 121 |
+
|
| 122 |
+
gr.outputs.Textbox(label="Title_prediction"),
|
| 123 |
+
gr.outputs.Textbox(label="Title_confidence_score"),
|
| 124 |
+
gr.outputs.Textbox(label="Content_prediction"),
|
| 125 |
+
gr.outputs.Textbox(label="content_confidence_score"),
|
| 126 |
+
gr.outputs.Textbox(label="new_data").style(show_copy_button=True)
|
| 127 |
+
],
|
| 128 |
+
)
|
| 129 |
+
demo.launch()
|