Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -65,8 +65,8 @@ def check_by_url(txt_url):
|
|
| 65 |
new_data = {"title": title, "content": normalized_content_with_style}
|
| 66 |
# return new_data
|
| 67 |
|
| 68 |
-
model = DistilBertForSequenceClassification.from_pretrained("
|
| 69 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
| 70 |
|
| 71 |
label_mapping = {1: "SFW", 0: "NSFW"}
|
| 72 |
test_encodings = tokenizer.encode_plus(
|
|
@@ -125,7 +125,9 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
| 125 |
confidence_scores_content,
|
| 126 |
new_data,
|
| 127 |
) = (None, None, None, None, None)
|
|
|
|
| 128 |
predicted_label_text, confidence_score_text = None, None
|
|
|
|
| 129 |
if txt_url.startswith("http://") or txt_url.startswith("https://"):
|
| 130 |
(
|
| 131 |
predicted_label_title,
|
|
@@ -135,8 +137,8 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
| 135 |
new_data,
|
| 136 |
) = check_by_url(txt_url)
|
| 137 |
elif txt_url.startswith(""):
|
| 138 |
-
model = DistilBertForSequenceClassification.from_pretrained("
|
| 139 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
| 140 |
|
| 141 |
test_encodings = tokenizer.encode_plus(
|
| 142 |
normalized_content_with_style,
|
|
@@ -145,6 +147,7 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
| 145 |
max_length=512,
|
| 146 |
return_tensors="pt",
|
| 147 |
)
|
|
|
|
| 148 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 149 |
test_input_ids = test_encodings["input_ids"].to(device)
|
| 150 |
test_attention_mask = test_encodings["attention_mask"].to(device)
|
|
@@ -169,6 +172,7 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
| 169 |
confidence_score_text,
|
| 170 |
#new,
|
| 171 |
)
|
|
|
|
| 172 |
def word_by_word(txt_url, normalized_content_with_style):
|
| 173 |
if txt_url.startswith("http://") or txt_url.startswith("https://") or txt_url.startswith(""):
|
| 174 |
(
|
|
@@ -181,8 +185,8 @@ def word_by_word(txt_url, normalized_content_with_style):
|
|
| 181 |
confidence_score_text,
|
| 182 |
) = predict_2(txt_url, normalized_content_with_style)
|
| 183 |
|
| 184 |
-
model = DistilBertForSequenceClassification.from_pretrained("")
|
| 185 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
| 186 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 187 |
model = model.to(device)
|
| 188 |
model.eval()
|
|
@@ -231,6 +235,8 @@ def word_by_word(txt_url, normalized_content_with_style):
|
|
| 231 |
confidence_score_text,
|
| 232 |
new_word,
|
| 233 |
)
|
|
|
|
|
|
|
| 234 |
demo = gr.Interface(
|
| 235 |
fn=word_by_word,
|
| 236 |
inputs=[
|
|
@@ -248,4 +254,5 @@ demo = gr.Interface(
|
|
| 248 |
gr.outputs.Textbox(label="word-by-word").style(show_copy_button=True),
|
| 249 |
],
|
| 250 |
)
|
| 251 |
-
|
|
|
|
|
|
| 65 |
new_data = {"title": title, "content": normalized_content_with_style}
|
| 66 |
# return new_data
|
| 67 |
|
| 68 |
+
model = DistilBertForSequenceClassification.from_pretrained("/content/LoadModel")
|
| 69 |
+
tokenizer = DistilBertTokenizer.from_pretrained("/content/LoadModel")
|
| 70 |
|
| 71 |
label_mapping = {1: "SFW", 0: "NSFW"}
|
| 72 |
test_encodings = tokenizer.encode_plus(
|
|
|
|
| 125 |
confidence_scores_content,
|
| 126 |
new_data,
|
| 127 |
) = (None, None, None, None, None)
|
| 128 |
+
|
| 129 |
predicted_label_text, confidence_score_text = None, None
|
| 130 |
+
|
| 131 |
if txt_url.startswith("http://") or txt_url.startswith("https://"):
|
| 132 |
(
|
| 133 |
predicted_label_title,
|
|
|
|
| 137 |
new_data,
|
| 138 |
) = check_by_url(txt_url)
|
| 139 |
elif txt_url.startswith(""):
|
| 140 |
+
model = DistilBertForSequenceClassification.from_pretrained("/content/LoadModel")
|
| 141 |
+
tokenizer = DistilBertTokenizer.from_pretrained("/content/LoadModel")
|
| 142 |
|
| 143 |
test_encodings = tokenizer.encode_plus(
|
| 144 |
normalized_content_with_style,
|
|
|
|
| 147 |
max_length=512,
|
| 148 |
return_tensors="pt",
|
| 149 |
)
|
| 150 |
+
|
| 151 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 152 |
test_input_ids = test_encodings["input_ids"].to(device)
|
| 153 |
test_attention_mask = test_encodings["attention_mask"].to(device)
|
|
|
|
| 172 |
confidence_score_text,
|
| 173 |
#new,
|
| 174 |
)
|
| 175 |
+
|
| 176 |
def word_by_word(txt_url, normalized_content_with_style):
|
| 177 |
if txt_url.startswith("http://") or txt_url.startswith("https://") or txt_url.startswith(""):
|
| 178 |
(
|
|
|
|
| 185 |
confidence_score_text,
|
| 186 |
) = predict_2(txt_url, normalized_content_with_style)
|
| 187 |
|
| 188 |
+
model = DistilBertForSequenceClassification.from_pretrained("/content/LoadModel")
|
| 189 |
+
tokenizer = DistilBertTokenizer.from_pretrained("/content/LoadModel")
|
| 190 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 191 |
model = model.to(device)
|
| 192 |
model.eval()
|
|
|
|
| 235 |
confidence_score_text,
|
| 236 |
new_word,
|
| 237 |
)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
demo = gr.Interface(
|
| 241 |
fn=word_by_word,
|
| 242 |
inputs=[
|
|
|
|
| 254 |
gr.outputs.Textbox(label="word-by-word").style(show_copy_button=True),
|
| 255 |
],
|
| 256 |
)
|
| 257 |
+
|
| 258 |
+
demo.launch(debug=True, share= True)
|