Spaces:
Runtime error
Runtime error
Commit
·
43cdd6d
1
Parent(s):
6ad29ed
Update app.py
Browse files
app.py
CHANGED
@@ -8,124 +8,166 @@ from sklearn.metrics import confusion_matrix, accuracy_score
|
|
8 |
import torch.nn.functional as F
|
9 |
import gradio as gr
|
10 |
import torch
|
|
|
11 |
|
12 |
def check_by_url(txt_url):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
demo = gr.Interface(
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
)
|
|
|
131 |
demo.launch()
|
|
|
8 |
import torch.nn.functional as F
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
+
import nltk
|
12 |
|
13 |
def check_by_url(txt_url):
|
14 |
+
#if txt_url.startswith("http://") or txt_url.startswith("https://"):
|
15 |
+
parsed_url = urlparse(txt_url)
|
16 |
+
url = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/"
|
17 |
+
print(url)
|
18 |
+
|
19 |
+
new_data = []
|
20 |
+
page = urlopen(url=url).read().decode("utf-8")
|
21 |
+
soup = BeautifulSoup(page, 'html.parser')
|
22 |
+
title = soup.find('title').get_text()
|
23 |
+
|
24 |
+
# remove punctuations from title
|
25 |
+
def remove_punctuation(title):
|
26 |
+
punctuationfree = "".join([i for i in title if i not in string.punctuation])
|
27 |
+
return punctuationfree
|
28 |
+
|
29 |
+
css_class_to_remove = "dp-highlighter" # Replace with the CSS class you want to remove
|
30 |
+
# Find <div> tags with the specified CSS class and remove their content
|
31 |
+
div_tags = soup.find_all(['code', 'pre'])
|
32 |
+
for div_tag in div_tags:
|
33 |
+
div_tag.clear()
|
34 |
+
|
35 |
+
div_tags = soup.find_all('div', class_=css_class_to_remove)
|
36 |
+
for div_tag in div_tags:
|
37 |
+
div_tag.clear()
|
38 |
+
|
39 |
+
# Fetch content of remaining tags
|
40 |
+
content_with_style = ""
|
41 |
+
p_tags_with_style = soup.find_all('p', style=True)
|
42 |
+
for p_tag in p_tags_with_style:
|
43 |
+
p_content = re.sub(r'\n', '', p_tag.get_text())
|
44 |
+
content_with_style += p_content
|
45 |
+
|
46 |
+
# Fetch content of <p> tags without style
|
47 |
+
content_without_style = ""
|
48 |
+
p_tags_without_style = soup.find_all('p', style=False)
|
49 |
+
for p_tag in p_tags_without_style:
|
50 |
+
p_content = re.sub(r'\n', '', p_tag.get_text())
|
51 |
+
content_without_style += p_content
|
52 |
+
|
53 |
+
# Replace Unicode characters in the content and remove duplicates
|
54 |
+
normalized_content_with_style = re.sub(r'\s+', ' ', content_with_style) # Remove extra spaces
|
55 |
+
normalized_content_with_style = normalized_content_with_style.replace('\r', '') # Replace '\r' characters
|
56 |
+
normalized_content_with_style = unicodedata.normalize('NFKD', normalized_content_with_style)
|
57 |
+
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
|
58 |
+
|
59 |
+
normalized_content_without_style = re.sub(r'\s+', ' ', content_without_style) # Remove extra spaces
|
60 |
+
normalized_content_without_style = normalized_content_without_style.replace('\r', '') # Replace '\r' characters
|
61 |
+
normalized_content_without_style = unicodedata.normalize('NFKD', normalized_content_without_style)
|
62 |
+
normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
|
63 |
+
|
64 |
+
normalized_content_with_style += normalized_content_without_style
|
65 |
+
new_data = {"title": title, "content": normalized_content_with_style}
|
66 |
+
|
67 |
+
Save_model = "/content/G:\Model_SAVE" # Replace with your saved model name
|
68 |
+
|
69 |
+
model = DistilBertForSequenceClassification.from_pretrained(Save_model)
|
70 |
+
tokenizer = DistilBertTokenizer.from_pretrained(Save_model)
|
71 |
+
|
72 |
+
test_encodings = tokenizer.encode_plus(
|
73 |
+
title,
|
74 |
+
truncation=True,
|
75 |
+
padding=True,
|
76 |
+
max_length=512,
|
77 |
+
return_tensors="pt"
|
78 |
+
)
|
79 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
80 |
+
test_input_ids = test_encodings["input_ids"].to(device)
|
81 |
+
test_attention_mask = test_encodings["attention_mask"].to(device)
|
82 |
+
with torch.no_grad():
|
83 |
+
model = model.to(device)
|
84 |
+
model.eval()
|
85 |
+
outputs = model(test_input_ids, attention_mask=test_attention_mask)
|
86 |
+
logits = outputs.logits
|
87 |
+
predicted_labels = torch.argmax(logits, dim=1)
|
88 |
+
probabilities = F.softmax(logits, dim=1)
|
89 |
+
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
|
90 |
+
predicted_label_title = predicted_labels.item()
|
91 |
+
|
92 |
+
test_encodings = tokenizer.encode_plus(
|
93 |
+
normalized_content_with_style,
|
94 |
+
truncation=True,
|
95 |
+
padding=True,
|
96 |
+
max_length=512,
|
97 |
+
return_tensors="pt"
|
98 |
+
)
|
99 |
+
test_input_ids = test_encodings["input_ids"].to(device)
|
100 |
+
test_attention_mask = test_encodings["attention_mask"].to(device)
|
101 |
+
with torch.no_grad():
|
102 |
+
outputs = model(test_input_ids, attention_mask=test_attention_mask)
|
103 |
+
logits = outputs.logits
|
104 |
+
predicted_labels = torch.argmax(logits, dim=1)
|
105 |
+
probabilities = F.softmax(logits, dim=1)
|
106 |
+
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
|
107 |
+
predicted_label_content = predicted_labels.item()
|
108 |
+
|
109 |
+
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
110 |
+
predicted_label_title = label_mapping[predicted_label_title]
|
111 |
+
predicted_label_content = label_mapping[predicted_label_content]
|
112 |
+
|
113 |
+
return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data
|
114 |
+
|
115 |
+
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
116 |
+
def predict_2(txt_url, normalized_content_with_style):
|
117 |
+
predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data = None, None, None, None, None
|
118 |
+
predicted_label_text, confidence_score_text = None, None
|
119 |
+
|
120 |
+
if txt_url.startswith("http://") or txt_url.startswith("https://"):
|
121 |
+
predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data = check_by_url(txt_url)
|
122 |
+
elif text.startswith(""):
|
123 |
+
model = DistilBertForSequenceClassification.from_pretrained(Save_model)
|
124 |
+
tokenizer = DistilBertTokenizer.from_pretrained(Save_model)
|
125 |
+
|
126 |
+
test_encodings = tokenizer.encode_plus(
|
127 |
+
normalized_content_with_style,
|
128 |
+
truncation=True,
|
129 |
+
padding=True,
|
130 |
+
max_length=512,
|
131 |
+
return_tensors="pt"
|
132 |
+
)
|
133 |
+
|
134 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
135 |
+
test_input_ids = test_encodings["input_ids"].to(device)
|
136 |
+
test_attention_mask = test_encodings["attention_mask"].to(device)
|
137 |
+
|
138 |
+
with torch.no_grad():
|
139 |
+
model = model.to(device)
|
140 |
+
model.eval()
|
141 |
+
outputs = model(test_input_ids, attention_mask=test_attention_mask)
|
142 |
+
logits = outputs.logits
|
143 |
+
predicted_labels = torch.argmax(logits, dim=1)
|
144 |
+
probabilities = F.softmax(logits, dim=1)
|
145 |
+
confidence_score_text = torch.max(probabilities, dim=1).values.tolist()
|
146 |
+
predicted_label_text = label_mapping[predicted_labels.item()]
|
147 |
+
|
148 |
+
|
149 |
+
#predicted_label_text, confidence_score_text=check_by_text(normalized_content_with_style)
|
150 |
+
else:
|
151 |
+
print("Done")
|
152 |
+
|
153 |
+
return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, predicted_label_text, confidence_score_text
|
154 |
|
155 |
demo = gr.Interface(
|
156 |
+
fn=predict_2,
|
157 |
+
inputs=[
|
158 |
+
gr.inputs.Textbox(label="URL", placeholder="Enter URL"),
|
159 |
+
gr.inputs.Textbox(label="Text", placeholder="Enter Text"),
|
160 |
+
#gr.inputs.Textbox(label="Content", placeholder="Enter Content"),
|
161 |
+
],
|
162 |
+
outputs=[
|
163 |
+
gr.outputs.Textbox(label="Title_prediction"),
|
164 |
+
gr.outputs.Textbox(label="Title_confidence_score"),
|
165 |
+
gr.outputs.Textbox(label="Content_prediction"),
|
166 |
+
gr.outputs.Textbox(label="Content_confidence_score"),
|
167 |
+
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
|
168 |
+
gr.outputs.Textbox(label="Tex_prediction"),
|
169 |
+
gr.outputs.Textbox(label="Text_confidence_score"),
|
170 |
+
],
|
171 |
)
|
172 |
+
|
173 |
demo.launch()
|