Spaces:
Runtime error
Runtime error
Update app.py
Browse filesadding feature of per Word classification
app.py
CHANGED
@@ -13,9 +13,7 @@ import nltk
|
|
13 |
|
14 |
def check_by_url(txt_url):
|
15 |
parsed_url = urlparse(txt_url)
|
16 |
-
url = (
|
17 |
-
f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/"
|
18 |
-
)
|
19 |
print(url)
|
20 |
|
21 |
new_data = []
|
@@ -28,9 +26,7 @@ def check_by_url(txt_url):
|
|
28 |
punctuationfree = "".join([i for i in title if i not in string.punctuation])
|
29 |
return punctuationfree
|
30 |
|
31 |
-
css_class_to_remove = (
|
32 |
-
"dp-highlighter" # Replace with the CSS class you want to remove
|
33 |
-
)
|
34 |
# Find <div> tags with the specified CSS class and remove their content
|
35 |
div_tags = soup.find_all(["code", "pre"])
|
36 |
for div_tag in div_tags:
|
@@ -55,38 +51,30 @@ def check_by_url(txt_url):
|
|
55 |
content_without_style += p_content
|
56 |
|
57 |
# Replace Unicode characters in the content and remove duplicates
|
58 |
-
normalized_content_with_style = re.sub(
|
59 |
-
|
60 |
-
|
61 |
-
normalized_content_with_style = normalized_content_with_style.replace(
|
62 |
-
"\r", ""
|
63 |
-
) # Replace '\r' characters
|
64 |
-
normalized_content_with_style = unicodedata.normalize(
|
65 |
-
"NFKD", normalized_content_with_style
|
66 |
-
)
|
67 |
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
|
68 |
|
69 |
-
normalized_content_without_style = re.sub(
|
70 |
-
|
71 |
-
|
72 |
-
normalized_content_without_style =
|
73 |
-
"\r", ""
|
74 |
-
) # Replace '\r' characters
|
75 |
-
normalized_content_without_style = unicodedata.normalize(
|
76 |
-
"NFKD", normalized_content_without_style
|
77 |
-
)
|
78 |
-
normalized_content_without_style = unidecode.unidecode(
|
79 |
-
normalized_content_without_style
|
80 |
-
)
|
81 |
|
82 |
normalized_content_with_style += normalized_content_without_style
|
83 |
new_data = {"title": title, "content": normalized_content_with_style}
|
|
|
84 |
|
85 |
-
model = DistilBertForSequenceClassification.from_pretrained("
|
86 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
87 |
|
|
|
88 |
test_encodings = tokenizer.encode_plus(
|
89 |
-
title,
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
test_input_ids = test_encodings["input_ids"].to(device)
|
@@ -98,9 +86,9 @@ def check_by_url(txt_url):
|
|
98 |
logits = outputs.logits
|
99 |
predicted_labels = torch.argmax(logits, dim=1)
|
100 |
probabilities = F.softmax(logits, dim=1)
|
101 |
-
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
|
102 |
-
predicted_label_title = predicted_labels.item()
|
103 |
-
|
104 |
test_encodings = tokenizer.encode_plus(
|
105 |
normalized_content_with_style,
|
106 |
truncation=True,
|
@@ -116,11 +104,7 @@ def check_by_url(txt_url):
|
|
116 |
predicted_labels = torch.argmax(logits, dim=1)
|
117 |
probabilities = F.softmax(logits, dim=1)
|
118 |
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
|
119 |
-
predicted_label_content = predicted_labels.item()
|
120 |
-
|
121 |
-
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
122 |
-
predicted_label_title = label_mapping[predicted_label_title]
|
123 |
-
predicted_label_content = label_mapping[predicted_label_content]
|
124 |
|
125 |
return (
|
126 |
predicted_label_title,
|
@@ -128,35 +112,35 @@ def check_by_url(txt_url):
|
|
128 |
predicted_label_content,
|
129 |
confidence_scores_content,
|
130 |
new_data,
|
|
|
131 |
)
|
132 |
|
133 |
-
|
134 |
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
135 |
-
|
136 |
-
|
137 |
def predict_2(txt_url, normalized_content_with_style):
|
138 |
-
|
139 |
predicted_label_title,
|
140 |
confidence_score_title,
|
141 |
predicted_label_content,
|
142 |
confidence_scores_content,
|
143 |
-
new_data,
|
144 |
) = (None, None, None, None, None)
|
145 |
-
predicted_label_text, confidence_score_text = None, None
|
146 |
|
147 |
-
|
148 |
-
|
|
|
|
|
149 |
predicted_label_title,
|
150 |
confidence_score_title,
|
151 |
predicted_label_content,
|
152 |
confidence_scores_content,
|
153 |
new_data,
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
|
159 |
-
|
160 |
normalized_content_with_style,
|
161 |
truncation=True,
|
162 |
padding=True,
|
@@ -164,11 +148,11 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
164 |
return_tensors="pt",
|
165 |
)
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
|
171 |
-
|
172 |
model = model.to(device)
|
173 |
model.eval()
|
174 |
outputs = model(test_input_ids, attention_mask=test_attention_mask)
|
@@ -178,22 +162,83 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
178 |
confidence_score_text = torch.max(probabilities, dim=1).values.tolist()
|
179 |
predicted_label_text = label_mapping[predicted_labels.item()]
|
180 |
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
|
195 |
demo = gr.Interface(
|
196 |
-
fn=
|
197 |
inputs=[
|
198 |
gr.inputs.Textbox(label="URL", placeholder="Enter URL"),
|
199 |
gr.inputs.Textbox(label="Text", placeholder="Enter Text"),
|
@@ -204,9 +249,10 @@ demo = gr.Interface(
|
|
204 |
gr.outputs.Textbox(label="Content_prediction"),
|
205 |
gr.outputs.Textbox(label="Content_confidence_score"),
|
206 |
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
|
207 |
-
gr.outputs.Textbox(label="
|
208 |
gr.outputs.Textbox(label="Text_confidence_score"),
|
|
|
209 |
],
|
210 |
-
)
|
211 |
|
212 |
-
demo.launch()
|
|
|
13 |
|
14 |
def check_by_url(txt_url):
|
15 |
parsed_url = urlparse(txt_url)
|
16 |
+
url = (f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/")
|
|
|
|
|
17 |
print(url)
|
18 |
|
19 |
new_data = []
|
|
|
26 |
punctuationfree = "".join([i for i in title if i not in string.punctuation])
|
27 |
return punctuationfree
|
28 |
|
29 |
+
css_class_to_remove = ("dp-highlighter") # Replace with the CSS class you want to remove
|
|
|
|
|
30 |
# Find <div> tags with the specified CSS class and remove their content
|
31 |
div_tags = soup.find_all(["code", "pre"])
|
32 |
for div_tag in div_tags:
|
|
|
51 |
content_without_style += p_content
|
52 |
|
53 |
# Replace Unicode characters in the content and remove duplicates
|
54 |
+
normalized_content_with_style = re.sub(r"\s+", " ", content_with_style) # Remove extra spaces
|
55 |
+
normalized_content_with_style = normalized_content_with_style.replace("\r", "") # Replace '\r' characters
|
56 |
+
normalized_content_with_style = unicodedata.normalize("NFKD", normalized_content_with_style)
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
|
58 |
|
59 |
+
normalized_content_without_style = re.sub(r"\s+", " ", content_without_style) # Remove extra spaces
|
60 |
+
normalized_content_without_style = normalized_content_without_style.replace("\r", "") # Replace '\r' characters
|
61 |
+
normalized_content_without_style = unicodedata.normalize("NFKD", normalized_content_without_style)
|
62 |
+
normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
normalized_content_with_style += normalized_content_without_style
|
65 |
new_data = {"title": title, "content": normalized_content_with_style}
|
66 |
+
# return new_data
|
67 |
|
68 |
+
model = DistilBertForSequenceClassification.from_pretrained("/content/LoadModel")
|
69 |
+
tokenizer = DistilBertTokenizer.from_pretrained("/content/LoadModel")
|
70 |
|
71 |
+
label_mapping = {1: "SFW", 0: "NSFW"}
|
72 |
test_encodings = tokenizer.encode_plus(
|
73 |
+
title,
|
74 |
+
truncation=True,
|
75 |
+
padding=True,
|
76 |
+
max_length=512,
|
77 |
+
return_tensors="pt"
|
78 |
)
|
79 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
80 |
test_input_ids = test_encodings["input_ids"].to(device)
|
|
|
86 |
logits = outputs.logits
|
87 |
predicted_labels = torch.argmax(logits, dim=1)
|
88 |
probabilities = F.softmax(logits, dim=1)
|
89 |
+
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
|
90 |
+
predicted_label_title = label_mapping[predicted_labels.item()]
|
91 |
+
|
92 |
test_encodings = tokenizer.encode_plus(
|
93 |
normalized_content_with_style,
|
94 |
truncation=True,
|
|
|
104 |
predicted_labels = torch.argmax(logits, dim=1)
|
105 |
probabilities = F.softmax(logits, dim=1)
|
106 |
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
|
107 |
+
predicted_label_content = label_mapping[predicted_labels.item()]
|
|
|
|
|
|
|
|
|
108 |
|
109 |
return (
|
110 |
predicted_label_title,
|
|
|
112 |
predicted_label_content,
|
113 |
confidence_scores_content,
|
114 |
new_data,
|
115 |
+
#new1,
|
116 |
)
|
117 |
|
|
|
118 |
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
|
119 |
+
|
|
|
120 |
def predict_2(txt_url, normalized_content_with_style):
|
121 |
+
(
|
122 |
predicted_label_title,
|
123 |
confidence_score_title,
|
124 |
predicted_label_content,
|
125 |
confidence_scores_content,
|
126 |
+
new_data,
|
127 |
) = (None, None, None, None, None)
|
|
|
128 |
|
129 |
+
predicted_label_text, confidence_score_text = None, None
|
130 |
+
|
131 |
+
if txt_url.startswith("http://") or txt_url.startswith("https://"):
|
132 |
+
(
|
133 |
predicted_label_title,
|
134 |
confidence_score_title,
|
135 |
predicted_label_content,
|
136 |
confidence_scores_content,
|
137 |
new_data,
|
138 |
+
) = check_by_url(txt_url)
|
139 |
+
elif txt_url.startswith(""):
|
140 |
+
model = DistilBertForSequenceClassification.from_pretrained("/content/LoadModel")
|
141 |
+
tokenizer = DistilBertTokenizer.from_pretrained("/content/LoadModel")
|
142 |
|
143 |
+
test_encodings = tokenizer.encode_plus(
|
144 |
normalized_content_with_style,
|
145 |
truncation=True,
|
146 |
padding=True,
|
|
|
148 |
return_tensors="pt",
|
149 |
)
|
150 |
|
151 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
152 |
+
test_input_ids = test_encodings["input_ids"].to(device)
|
153 |
+
test_attention_mask = test_encodings["attention_mask"].to(device)
|
154 |
|
155 |
+
with torch.no_grad():
|
156 |
model = model.to(device)
|
157 |
model.eval()
|
158 |
outputs = model(test_input_ids, attention_mask=test_attention_mask)
|
|
|
162 |
confidence_score_text = torch.max(probabilities, dim=1).values.tolist()
|
163 |
predicted_label_text = label_mapping[predicted_labels.item()]
|
164 |
|
165 |
+
return (
|
166 |
+
predicted_label_title,
|
167 |
+
confidence_score_title,
|
168 |
+
predicted_label_content,
|
169 |
+
confidence_scores_content,
|
170 |
+
new_data,
|
171 |
+
predicted_label_text,
|
172 |
+
confidence_score_text,
|
173 |
+
#new,
|
174 |
+
)
|
175 |
|
176 |
+
def word_by_word(txt_url, normalized_content_with_style):
|
177 |
+
if txt_url.startswith("http://") or txt_url.startswith("https://") or txt_url.startswith(""):
|
178 |
+
(
|
179 |
+
predicted_label_title,
|
180 |
+
confidence_score_title,
|
181 |
+
predicted_label_content,
|
182 |
+
confidence_scores_content,
|
183 |
+
new_data,
|
184 |
+
predicted_label_text,
|
185 |
+
confidence_score_text,
|
186 |
+
) = predict_2(txt_url, normalized_content_with_style)
|
187 |
+
|
188 |
+
model = DistilBertForSequenceClassification.from_pretrained("/content/LoadModel")
|
189 |
+
tokenizer = DistilBertTokenizer.from_pretrained("/content/LoadModel")
|
190 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
191 |
+
model = model.to(device)
|
192 |
+
model.eval()
|
193 |
+
|
194 |
+
new_word={}
|
195 |
+
content_words =[]
|
196 |
+
words_2 =[]
|
197 |
+
if predicted_label_content=="NSFW" or predicted_label_text=="NSFW":
|
198 |
+
if txt_url.startswith("http://") or txt_url.startswith("https://"):
|
199 |
+
content_words = new_data['content'].split()
|
200 |
+
else:
|
201 |
+
words_2 = normalized_content_with_style.split()
|
202 |
+
|
203 |
+
results = []
|
204 |
+
for word in content_words or words_2 :
|
205 |
+
encoding = tokenizer.encode_plus(
|
206 |
+
word,
|
207 |
+
truncation=True,
|
208 |
+
padding=True,
|
209 |
+
max_length=512,
|
210 |
+
return_tensors="pt"
|
211 |
+
)
|
212 |
+
input_ids = encoding["input_ids"].to(device)
|
213 |
+
attention_mask = encoding["attention_mask"].to(device)
|
214 |
+
with torch.no_grad():
|
215 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
216 |
+
logits = outputs.logits
|
217 |
+
probabilities = F.softmax(logits, dim=1)
|
218 |
+
predicted_label = torch.argmax(logits, dim=1).item()
|
219 |
+
#label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:False
|
220 |
+
predicted_label_word = label_mapping[predicted_label]
|
221 |
+
confidence_score_word = torch.max(probabilities, dim=1).values.item()
|
222 |
+
|
223 |
+
#new_word={}
|
224 |
+
if predicted_label_word=="NSFW":
|
225 |
+
result = {"Word": word, "Label": predicted_label_word, "Confidence": confidence_score_word}
|
226 |
+
results.append(result)
|
227 |
+
new_word = json.dumps(results)
|
228 |
+
return(
|
229 |
+
predicted_label_title,
|
230 |
+
confidence_score_title,
|
231 |
+
predicted_label_content,
|
232 |
+
confidence_scores_content,
|
233 |
+
new_data,
|
234 |
+
predicted_label_text,
|
235 |
+
confidence_score_text,
|
236 |
+
new_word,
|
237 |
+
)
|
238 |
|
239 |
|
240 |
demo = gr.Interface(
|
241 |
+
fn=word_by_word,
|
242 |
inputs=[
|
243 |
gr.inputs.Textbox(label="URL", placeholder="Enter URL"),
|
244 |
gr.inputs.Textbox(label="Text", placeholder="Enter Text"),
|
|
|
249 |
gr.outputs.Textbox(label="Content_prediction"),
|
250 |
gr.outputs.Textbox(label="Content_confidence_score"),
|
251 |
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
|
252 |
+
gr.outputs.Textbox(label="Text_prediction_score"),
|
253 |
gr.outputs.Textbox(label="Text_confidence_score"),
|
254 |
+
gr.outputs.Textbox(label="word-by-word").style(show_copy_button=True),
|
255 |
],
|
256 |
+
)
|
257 |
|
258 |
+
demo.launch(debug=True, share= True)
|