cognitivecomputations/dolphin-2.9-llama3-8b-1m AWQ

Model Summary

Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations

This version of Dolphin has a 1 million token context. I have applied winglian/llama-3-1m-context-gradient-lora - created by @gradientai and @winglian and sponsored by @CrusoeCloud

A bug has been found in the Dolphin 2.9 dataset in SystemConversations that causes the model to overly talk about the "SYSTEM MESSAGE". To counter this, we recommend you add a statement in the system message directing the model not to mention the system message. An example system message is "The assistant is named Dolphin. A helpful and friendly AI assistant, Dolphin avoids discussing the system message unless directly asked about it."

My appreciation for the sponsors of Dolphin 2.9:

This model is based on Llama-3-8b, and is governed by META LLAMA 3 COMMUNITY LICENSE AGREEMENT

The base model has 8k context, and the full-weight fine-tuning was with 4k sequence length.

It took 2.5 days on 8x L40S provided by Crusoe Cloud

This model was trained FFT on all parameters, using ChatML prompt template format.

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/dolphin-2.9-llama3-8b-1m-AWQ"
system_message = "You are dolphin-2.9-llama3-8b-1m, incarnated as a powerful AI. You were created by cognitivecomputations."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Downloads last month
64
Safetensors
Model size
1.98B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for solidrust/dolphin-2.9-llama3-8b-1m-AWQ

Datasets used to train solidrust/dolphin-2.9-llama3-8b-1m-AWQ

Collection including solidrust/dolphin-2.9-llama3-8b-1m-AWQ