Edit model card

Locutusque/Hyperion-3.0-Mistral-7B-DPO AWQ

Model Summary

  • Model Name: Locutusque/Hyperion-3.0-Mistral-7B-DPO
  • Base Model: mistralai/Mistral-7B-v0.1
  • Publisher: Locutusque
  • Model Type: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning
  • Language: Multi-domain, English language
  • License: Apache-2.0

Locutusque/Hyperion-3.0-Mistral-7B-DPO is an advanced language model fine-tuned with a dataset of 20,000 meticulously curated high-quality preference pairs using Direct Preference Optimization (DPO). The examples were generated by GPT-4 to ensure exceptional quality and relevance. This model is designed to provide superior performance across a wide range of complex tasks, including question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, and logical reasoning.

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Hyperion-3.0-Mistral-7B-DPO-AWQ"
system_message = "You are Hyperion, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Downloads last month
15
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for solidrust/Hyperion-3.0-Mistral-7B-DPO-AWQ

Quantized
(3)
this model

Collection including solidrust/Hyperion-3.0-Mistral-7B-DPO-AWQ