new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 9

Dynamic Appearance Modeling of Clothed 3D Human Avatars using a Single Camera

The appearance of a human in clothing is driven not only by the pose but also by its temporal context, i.e., motion. However, such context has been largely neglected by existing monocular human modeling methods whose neural networks often struggle to learn a video of a person with large dynamics due to the motion ambiguity, i.e., there exist numerous geometric configurations of clothes that are dependent on the context of motion even for the same pose. In this paper, we introduce a method for high-quality modeling of clothed 3D human avatars using a video of a person with dynamic movements. The main challenge comes from the lack of 3D ground truth data of geometry and its temporal correspondences. We address this challenge by introducing a novel compositional human modeling framework that takes advantage of both explicit and implicit human modeling. For explicit modeling, a neural network learns to generate point-wise shape residuals and appearance features of a 3D body model by comparing its 2D rendering results and the original images. This explicit model allows for the reconstruction of discriminative 3D motion features from UV space by encoding their temporal correspondences. For implicit modeling, an implicit network combines the appearance and 3D motion features to decode high-fidelity clothed 3D human avatars with motion-dependent geometry and texture. The experiments show that our method can generate a large variation of secondary motion in a physically plausible way.

Towards Collaborative Plan Acquisition through Theory of Mind Modeling in Situated Dialogue

Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.

DiscRec: Disentangled Semantic-Collaborative Modeling for Generative Recommendation

Generative recommendation is emerging as a powerful paradigm that directly generates item predictions, moving beyond traditional matching-based approaches. However, current methods face two key challenges: token-item misalignment, where uniform token-level modeling ignores item-level granularity that is critical for collaborative signal learning, and semantic-collaborative signal entanglement, where collaborative and semantic signals exhibit distinct distributions yet are fused in a unified embedding space, leading to conflicting optimization objectives that limit the recommendation performance. To address these issues, we propose DiscRec, a novel framework that enables Disentangled Semantic-Collaborative signal modeling with flexible fusion for generative Recommendation.First, DiscRec introduces item-level position embeddings, assigned based on indices within each semantic ID, enabling explicit modeling of item structure in input token sequences.Second, DiscRec employs a dual-branch module to disentangle the two signals at the embedding layer: a semantic branch encodes semantic signals using original token embeddings, while a collaborative branch applies localized attention restricted to tokens within the same item to effectively capture collaborative signals. A gating mechanism subsequently fuses both branches while preserving the model's ability to model sequential dependencies. Extensive experiments on four real-world datasets demonstrate that DiscRec effectively decouples these signals and consistently outperforms state-of-the-art baselines. Our codes are available on https://github.com/Ten-Mao/DiscRec.

PEEKABOO: Hiding parts of an image for unsupervised object localization

Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information such as the appearance, type and number of objects, as well as the lack of labeled object classes typically available in supervised settings. While recent approaches to unsupervised object localization have demonstrated significant progress by leveraging self-supervised visual representations, they often require computationally intensive training processes, resulting in high resource demands in terms of computation, learnable parameters, and data. They also lack explicit modeling of visual context, potentially limiting their accuracy in object localization. To tackle these challenges, we propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization by learning context-based representations at both the pixel- and shape-level of the localized objects through image masking. The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision. The experimental results, both quantitative and qualitative, across various benchmark datasets, demonstrate the simplicity, effectiveness and competitive performance of our approach compared to state-of-the-art methods in both single object discovery and unsupervised salient object detection tasks. Code and pre-trained models are available at: https://github.com/hasibzunair/peekaboo

Volumetric Wireframe Parsing from Neural Attraction Fields

The primal sketch is a fundamental representation in Marr's vision theory, which allows for parsimonious image-level processing from 2D to 2.5D perception. This paper takes a further step by computing 3D primal sketch of wireframes from a set of images with known camera poses, in which we take the 2D wireframes in multi-view images as the basis to compute 3D wireframes in a volumetric rendering formulation. In our method, we first propose a NEural Attraction (NEAT) Fields that parameterizes the 3D line segments with coordinate Multi-Layer Perceptrons (MLPs), enabling us to learn the 3D line segments from 2D observation without incurring any explicit feature correspondences across views. We then present a novel Global Junction Perceiving (GJP) module to perceive meaningful 3D junctions from the NEAT Fields of 3D line segments by optimizing a randomly initialized high-dimensional latent array and a lightweight decoding MLP. Benefitting from our explicit modeling of 3D junctions, we finally compute the primal sketch of 3D wireframes by attracting the queried 3D line segments to the 3D junctions, significantly simplifying the computation paradigm of 3D wireframe parsing. In experiments, we evaluate our approach on the DTU and BlendedMVS datasets with promising performance obtained. As far as we know, our method is the first approach to achieve high-fidelity 3D wireframe parsing without requiring explicit matching.

Single Image Backdoor Inversion via Robust Smoothed Classifiers

Backdoor inversion, the process of finding a backdoor trigger inserted into a machine learning model, has become the pillar of many backdoor detection and defense methods. Previous works on backdoor inversion often recover the backdoor through an optimization process to flip a support set of clean images into the target class. However, it is rarely studied and understood how large this support set should be to recover a successful backdoor. In this work, we show that one can reliably recover the backdoor trigger with as few as a single image. Specifically, we propose the SmoothInv method, which first constructs a robust smoothed version of the backdoored classifier and then performs guided image synthesis towards the target class to reveal the backdoor pattern. SmoothInv requires neither an explicit modeling of the backdoor via a mask variable, nor any complex regularization schemes, which has become the standard practice in backdoor inversion methods. We perform both quantitaive and qualitative study on backdoored classifiers from previous published backdoor attacks. We demonstrate that compared to existing methods, SmoothInv is able to recover successful backdoors from single images, while maintaining high fidelity to the original backdoor. We also show how we identify the target backdoored class from the backdoored classifier. Last, we propose and analyze two countermeasures to our approach and show that SmoothInv remains robust in the face of an adaptive attacker. Our code is available at https://github.com/locuslab/smoothinv .

MotionCLR: Motion Generation and Training-free Editing via Understanding Attention Mechanisms

This research delves into the problem of interactive editing of human motion generation. Previous motion diffusion models lack explicit modeling of the word-level text-motion correspondence and good explainability, hence restricting their fine-grained editing ability. To address this issue, we propose an attention-based motion diffusion model, namely MotionCLR, with CLeaR modeling of attention mechanisms. Technically, MotionCLR models the in-modality and cross-modality interactions with self-attention and cross-attention, respectively. More specifically, the self-attention mechanism aims to measure the sequential similarity between frames and impacts the order of motion features. By contrast, the cross-attention mechanism works to find the fine-grained word-sequence correspondence and activate the corresponding timesteps in the motion sequence. Based on these key properties, we develop a versatile set of simple yet effective motion editing methods via manipulating attention maps, such as motion (de-)emphasizing, in-place motion replacement, and example-based motion generation, etc. For further verification of the explainability of the attention mechanism, we additionally explore the potential of action-counting and grounded motion generation ability via attention maps. Our experimental results show that our method enjoys good generation and editing ability with good explainability.

Model-Based Transfer Learning for Contextual Reinforcement Learning

Deep reinforcement learning (RL) is a powerful approach to complex decision making. However, one issue that limits its practical application is its brittleness, sometimes failing to train in the presence of small changes in the environment. Motivated by the success of zero-shot transfer-where pre-trained models perform well on related tasks-we consider the problem of selecting a good set of training tasks to maximize generalization performance across a range of tasks. Given the high cost of training, it is critical to select training tasks strategically, but not well understood how to do so. We hence introduce Model-Based Transfer Learning (MBTL), which layers on top of existing RL methods to effectively solve contextual RL problems. MBTL models the generalization performance in two parts: 1) the performance set point, modeled using Gaussian processes, and 2) performance loss (generalization gap), modeled as a linear function of contextual similarity. MBTL combines these two pieces of information within a Bayesian optimization (BO) framework to strategically select training tasks. We show theoretically that the method exhibits sublinear regret in the number of training tasks and discuss conditions to further tighten regret bounds. We experimentally validate our methods using urban traffic and standard continuous control benchmarks. The experimental results suggest that MBTL can achieve up to 50x improved sample efficiency compared with canonical independent training and multi-task training. Further experiments demonstrate the efficacy of BO and the insensitivity to the underlying RL algorithm and hyperparameters. This work lays the foundations for investigating explicit modeling of generalization, thereby enabling principled yet effective methods for contextual RL.

Polyline Path Masked Attention for Vision Transformer

Global dependency modeling and spatial position modeling are two core issues of the foundational architecture design in current deep learning frameworks. Recently, Vision Transformers (ViTs) have achieved remarkable success in computer vision, leveraging the powerful global dependency modeling capability of the self-attention mechanism. Furthermore, Mamba2 has demonstrated its significant potential in natural language processing tasks by explicitly modeling the spatial adjacency prior through the structured mask. In this paper, we propose Polyline Path Masked Attention (PPMA) that integrates the self-attention mechanism of ViTs with an enhanced structured mask of Mamba2, harnessing the complementary strengths of both architectures. Specifically, we first ameliorate the traditional structured mask of Mamba2 by introducing a 2D polyline path scanning strategy and derive its corresponding structured mask, polyline path mask, which better preserves the adjacency relationships among image tokens. Notably, we conduct a thorough theoretical analysis on the structural characteristics of the proposed polyline path mask and design an efficient algorithm for the computation of the polyline path mask. Next, we embed the polyline path mask into the self-attention mechanism of ViTs, enabling explicit modeling of spatial adjacency prior. Extensive experiments on standard benchmarks, including image classification, object detection, and segmentation, demonstrate that our model outperforms previous state-of-the-art approaches based on both state-space models and Transformers. For example, our proposed PPMA-T/S/B models achieve 48.7%/51.1%/52.3% mIoU on the ADE20K semantic segmentation task, surpassing RMT-T/S/B by 0.7%/1.3%/0.3%, respectively. Code is available at https://github.com/zhongchenzhao/PPMA.

Deep Knowledge Tracing with Learning Curves

Knowledge tracing (KT) has recently been an active research area of computational pedagogy. The task is to model students' mastery level of knowledge concepts based on their responses to the questions in the past, as well as predict the probabilities that they correctly answer subsequent questions in the future. KT tasks were historically solved using statistical modeling methods such as Bayesian inference and factor analysis, but recent advances in deep learning have led to the successive proposals that leverage deep neural networks, including long short-term memory networks, memory-augmented networks and self-attention networks. While those deep models demonstrate superior performance over the traditional approaches, they all neglect the explicit modeling of the learning curve theory, which generally says that more practice on the same knowledge concept enhances one's mastery level of the concept. Based on this theory, we propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper. The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question, and fuses the learnt feature with the feature representing her overall latent knowledge state obtained using a classic LSTM network. The fused feature is then fed into a second LSTM network to predict the student's response to the next question. Experimental results show that CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models. We also conduct extensive sensitivity analysis and ablation study to show the stability of the results and justify the particular architecture of CAKT, respectively.

FlexSpeech: Towards Stable, Controllable and Expressive Text-to-Speech

Current speech generation research can be categorized into two primary classes: non-autoregressive and autoregressive. The fundamental distinction between these approaches lies in the duration prediction strategy employed for predictable-length sequences. The NAR methods ensure stability in speech generation by explicitly and independently modeling the duration of each phonetic unit. Conversely, AR methods employ an autoregressive paradigm to predict the compressed speech token by implicitly modeling duration with Markov properties. Although this approach improves prosody, it does not provide the structural guarantees necessary for stability. To simultaneously address the issues of stability and naturalness in speech generation, we propose FlexSpeech, a stable, controllable, and expressive TTS model. The motivation behind FlexSpeech is to incorporate Markov dependencies and preference optimization directly on the duration predictor to boost its naturalness while maintaining explicit modeling of the phonetic units to ensure stability. Specifically, we decompose the speech generation task into two components: an AR duration predictor and a NAR acoustic model. The acoustic model is trained on a substantial amount of data to learn to render audio more stably, given reference audio prosody and phone durations. The duration predictor is optimized in a lightweight manner for different stylistic variations, thereby enabling rapid style transfer while maintaining a decoupled relationship with the specified speaker timbre. Experimental results demonstrate that our approach achieves SOTA stability and naturalness in zero-shot TTS. More importantly, when transferring to a specific stylistic domain, we can accomplish lightweight optimization of the duration module solely with about 100 data samples, without the need to adjust the acoustic model, thereby enabling rapid and stable style transfer.

LangSplat: 3D Language Gaussian Splatting

Human lives in a 3D world and commonly uses natural language to interact with a 3D scene. Modeling a 3D language field to support open-ended language queries in 3D has gained increasing attention recently. This paper introduces LangSplat, which constructs a 3D language field that enables precise and efficient open-vocabulary querying within 3D spaces. Unlike existing methods that ground CLIP language embeddings in a NeRF model, LangSplat advances the field by utilizing a collection of 3D Gaussians, each encoding language features distilled from CLIP, to represent the language field. By employing a tile-based splatting technique for rendering language features, we circumvent the costly rendering process inherent in NeRF. Instead of directly learning CLIP embeddings, LangSplat first trains a scene-wise language autoencoder and then learns language features on the scene-specific latent space, thereby alleviating substantial memory demands imposed by explicit modeling. Existing methods struggle with imprecise and vague 3D language fields, which fail to discern clear boundaries between objects. We delve into this issue and propose to learn hierarchical semantics using SAM, thereby eliminating the need for extensively querying the language field across various scales and the regularization of DINO features. Extensive experiments on open-vocabulary 3D object localization and semantic segmentation demonstrate that LangSplat significantly outperforms the previous state-of-the-art method LERF by a large margin. Notably, LangSplat is extremely efficient, achieving a {\speed} times speedup compared to LERF at the resolution of 1440 times 1080. We strongly recommend readers to check out our video results at https://langsplat.github.io

ERU-KG: Efficient Reference-aligned Unsupervised Keyphrase Generation

Unsupervised keyphrase prediction has gained growing interest in recent years. However, existing methods typically rely on heuristically defined importance scores, which may lead to inaccurate informativeness estimation. In addition, they lack consideration for time efficiency. To solve these problems, we propose ERU-KG, an unsupervised keyphrase generation (UKG) model that consists of an informativeness and a phraseness module. The former estimates the relevance of keyphrase candidates, while the latter generate those candidates. The informativeness module innovates by learning to model informativeness through references (e.g., queries, citation contexts, and titles) and at the term-level, thereby 1) capturing how the key concepts of documents are perceived in different contexts and 2) estimating informativeness of phrases more efficiently by aggregating term informativeness, removing the need for explicit modeling of the candidates. ERU-KG demonstrates its effectiveness on keyphrase generation benchmarks by outperforming unsupervised baselines and achieving on average 89\% of the performance of a supervised model for top 10 predictions. Additionally, to highlight its practical utility, we evaluate the model on text retrieval tasks and show that keyphrases generated by ERU-KG are effective when employed as query and document expansions. Furthermore, inference speed tests reveal that ERU-KG is the fastest among baselines of similar model sizes. Finally, our proposed model can switch between keyphrase generation and extraction by adjusting hyperparameters, catering to diverse application requirements.

DriveCamSim: Generalizable Camera Simulation via Explicit Camera Modeling for Autonomous Driving

Camera sensor simulation serves as a critical role for autonomous driving (AD), e.g. evaluating vision-based AD algorithms. While existing approaches have leveraged generative models for controllable image/video generation, they remain constrained to generating multi-view video sequences with fixed camera viewpoints and video frequency, significantly limiting their downstream applications. To address this, we present a generalizable camera simulation framework DriveCamSim, whose core innovation lies in the proposed Explicit Camera Modeling (ECM) mechanism. Instead of implicit interaction through vanilla attention, ECM establishes explicit pixel-wise correspondences across multi-view and multi-frame dimensions, decoupling the model from overfitting to the specific camera configurations (intrinsic/extrinsic parameters, number of views) and temporal sampling rates presented in the training data. For controllable generation, we identify the issue of information loss inherent in existing conditional encoding and injection pipelines, proposing an information-preserving control mechanism. This control mechanism not only improves conditional controllability, but also can be extended to be identity-aware to enhance temporal consistency in foreground object rendering. With above designs, our model demonstrates superior performance in both visual quality and controllability, as well as generalization capability across spatial-level (camera parameters variations) and temporal-level (video frame rate variations), enabling flexible user-customizable camera simulation tailored to diverse application scenarios. Code will be avaliable at https://github.com/swc-17/DriveCamSim for facilitating future research.

Motion-I2V: Consistent and Controllable Image-to-Video Generation with Explicit Motion Modeling

We introduce Motion-I2V, a novel framework for consistent and controllable image-to-video generation (I2V). In contrast to previous methods that directly learn the complicated image-to-video mapping, Motion-I2V factorizes I2V into two stages with explicit motion modeling. For the first stage, we propose a diffusion-based motion field predictor, which focuses on deducing the trajectories of the reference image's pixels. For the second stage, we propose motion-augmented temporal attention to enhance the limited 1-D temporal attention in video latent diffusion models. This module can effectively propagate reference image's feature to synthesized frames with the guidance of predicted trajectories from the first stage. Compared with existing methods, Motion-I2V can generate more consistent videos even at the presence of large motion and viewpoint variation. By training a sparse trajectory ControlNet for the first stage, Motion-I2V can support users to precisely control motion trajectories and motion regions with sparse trajectory and region annotations. This offers more controllability of the I2V process than solely relying on textual instructions. Additionally, Motion-I2V's second stage naturally supports zero-shot video-to-video translation. Both qualitative and quantitative comparisons demonstrate the advantages of Motion-I2V over prior approaches in consistent and controllable image-to-video generation.

VIOLET : End-to-End Video-Language Transformers with Masked Visual-token Modeling

A great challenge in video-language (VidL) modeling lies in the disconnection between fixed video representations extracted from image/video understanding models and downstream VidL data. Recent studies try to mitigate this disconnection via end-to-end training. To make it computationally feasible, prior works tend to "imagify" video inputs, i.e., a handful of sparsely sampled frames are fed into a 2D CNN, followed by a simple mean-pooling or concatenation to obtain the overall video representations. Although achieving promising results, such simple approaches may lose temporal information that is essential for performing downstream VidL tasks. In this work, we present VIOLET, a fully end-to-end VIdeO-LanguagE Transformer, which adopts a video transformer to explicitly model the temporal dynamics of video inputs. Further, unlike previous studies that found pre-training tasks on video inputs (e.g., masked frame modeling) not very effective, we design a new pre-training task, Masked Visual-token Modeling (MVM), for better video modeling. Specifically, the original video frame patches are "tokenized" into discrete visual tokens, and the goal is to recover the original visual tokens based on the masked patches. Comprehensive analysis demonstrates the effectiveness of both explicit temporal modeling via video transformer and MVM. As a result, VIOLET achieves new state-of-the-art performance on 5 video question answering tasks and 4 text-to-video retrieval tasks.

ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Spotting

Scene text spotting is of great importance to the computer vision community due to its wide variety of applications. Recent methods attempt to introduce linguistic knowledge for challenging recognition rather than pure visual classification. However, how to effectively model the linguistic rules in end-to-end deep networks remains a research challenge. In this paper, we argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input. Correspondingly, we propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting. Firstly, the autonomous suggests enforcing explicitly language modeling by decoupling the recognizer into vision model and language model and blocking gradient flow between both models. Secondly, a novel bidirectional cloze network (BCN) as the language model is proposed based on bidirectional feature representation. Thirdly, we propose an execution manner of iterative correction for the language model which can effectively alleviate the impact of noise input. Finally, to polish ABINet++ in long text recognition, we propose to aggregate horizontal features by embedding Transformer units inside a U-Net, and design a position and content attention module which integrates character order and content to attend to character features precisely. ABINet++ achieves state-of-the-art performance on both scene text recognition and scene text spotting benchmarks, which consistently demonstrates the superiority of our method in various environments especially on low-quality images. Besides, extensive experiments including in English and Chinese also prove that, a text spotter that incorporates our language modeling method can significantly improve its performance both in accuracy and speed compared with commonly used attention-based recognizers.

DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution using Large Language Models

Large Language Models (LLMs) have demonstrated promising reasoning capabilities in robotics; however, their application in multi-robot systems remains limited, particularly in handling task dependencies. This paper introduces DART-LLM, a novel framework that employs Directed Acyclic Graphs (DAGs) to model task dependencies, enabling the decomposition of natural language instructions into well-coordinated subtasks for multi-robot execution. DART-LLM comprises four key components: a Question-Answering (QA) LLM module for dependency-aware task decomposition, a Breakdown Function module for robot assignment, an Actuation module for execution, and a Vision-Language Model (VLM)-based object detector for environmental perception, achieving end-to-end task execution. Experimental results across three task complexity levels demonstrate that DART-LLM achieves state-of-the-art performance, significantly outperforming the baseline across all evaluation metrics. Among the tested models, DeepSeek-r1-671B achieves the highest success rate, whereas Llama-3.1-8B exhibits superior response time reliability. Ablation studies further confirm that explicit dependency modeling notably enhances the performance of smaller models, facilitating efficient deployment on resource-constrained platforms. Please refer to the project website https://wyd0817.github.io/project-dart-llm/ for videos and code.

Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle

We introduce Gaussian-Flow, a novel point-based approach for fast dynamic scene reconstruction and real-time rendering from both multi-view and monocular videos. In contrast to the prevalent NeRF-based approaches hampered by slow training and rendering speeds, our approach harnesses recent advancements in point-based 3D Gaussian Splatting (3DGS). Specifically, a novel Dual-Domain Deformation Model (DDDM) is proposed to explicitly model attribute deformations of each Gaussian point, where the time-dependent residual of each attribute is captured by a polynomial fitting in the time domain, and a Fourier series fitting in the frequency domain. The proposed DDDM is capable of modeling complex scene deformations across long video footage, eliminating the need for training separate 3DGS for each frame or introducing an additional implicit neural field to model 3D dynamics. Moreover, the explicit deformation modeling for discretized Gaussian points ensures ultra-fast training and rendering of a 4D scene, which is comparable to the original 3DGS designed for static 3D reconstruction. Our proposed approach showcases a substantial efficiency improvement, achieving a 5times faster training speed compared to the per-frame 3DGS modeling. In addition, quantitative results demonstrate that the proposed Gaussian-Flow significantly outperforms previous leading methods in novel view rendering quality. Project page: https://nju-3dv.github.io/projects/Gaussian-Flow

Scalable Diffusion for Materials Generation

Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.

OLIVES Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics

Clinical diagnosis of the eye is performed over multifarious data modalities including scalar clinical labels, vectorized biomarkers, two-dimensional fundus images, and three-dimensional Optical Coherence Tomography (OCT) scans. Clinical practitioners use all available data modalities for diagnosing and treating eye diseases like Diabetic Retinopathy (DR) or Diabetic Macular Edema (DME). Enabling usage of machine learning algorithms within the ophthalmic medical domain requires research into the relationships and interactions between all relevant data over a treatment period. Existing datasets are limited in that they neither provide data nor consider the explicit relationship modeling between the data modalities. In this paper, we introduce the Ophthalmic Labels for Investigating Visual Eye Semantics (OLIVES) dataset that addresses the above limitation. This is the first OCT and near-IR fundus dataset that includes clinical labels, biomarker labels, disease labels, and time-series patient treatment information from associated clinical trials. The dataset consists of 1268 near-IR fundus images each with at least 49 OCT scans, and 16 biomarkers, along with 4 clinical labels and a disease diagnosis of DR or DME. In total, there are 96 eyes' data averaged over a period of at least two years with each eye treated for an average of 66 weeks and 7 injections. We benchmark the utility of OLIVES dataset for ophthalmic data as well as provide benchmarks and concrete research directions for core and emerging machine learning paradigms within medical image analysis.

CatGCN: Graph Convolutional Networks with Categorical Node Features

Recent studies on Graph Convolutional Networks (GCNs) reveal that the initial node representations (i.e., the node representations before the first-time graph convolution) largely affect the final model performance. However, when learning the initial representation for a node, most existing work linearly combines the embeddings of node features, without considering the interactions among the features (or feature embeddings). We argue that when the node features are categorical, e.g., in many real-world applications like user profiling and recommender system, feature interactions usually carry important signals for predictive analytics. Ignoring them will result in suboptimal initial node representation and thus weaken the effectiveness of the follow-up graph convolution. In this paper, we propose a new GCN model named CatGCN, which is tailored for graph learning when the node features are categorical. Specifically, we integrate two ways of explicit interaction modeling into the learning of initial node representation, i.e., local interaction modeling on each pair of node features and global interaction modeling on an artificial feature graph. We then refine the enhanced initial node representations with the neighborhood aggregation-based graph convolution. We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification. Extensive experiments on three tasks of user profiling (the prediction of user age, city, and purchase level) from Tencent and Alibaba datasets validate the effectiveness of CatGCN, especially the positive effect of performing feature interaction modeling before graph convolution.

SAMWISE: Infusing wisdom in SAM2 for Text-Driven Video Segmentation

Referring Video Object Segmentation (RVOS) relies on natural language expressions to segment an object in a video clip. Existing methods restrict reasoning either to independent short clips, losing global context, or process the entire video offline, impairing their application in a streaming fashion. In this work, we aim to surpass these limitations and design an RVOS method capable of effectively operating in streaming-like scenarios while retaining contextual information from past frames. We build upon the Segment-Anything 2 (SAM2) model, that provides robust segmentation and tracking capabilities and is naturally suited for streaming processing. We make SAM2 wiser, by empowering it with natural language understanding and explicit temporal modeling at the feature extraction stage, without fine-tuning its weights, and without outsourcing modality interaction to external models. To this end, we introduce a novel adapter module that injects temporal information and multi-modal cues in the feature extraction process. We further reveal the phenomenon of tracking bias in SAM2 and propose a learnable module to adjust its tracking focus when the current frame features suggest a new object more aligned with the caption. Our proposed method, SAMWISE, achieves state-of-the-art across various benchmarks, by adding a negligible overhead of just 4.2 M parameters. The code is available at https://github.com/ClaudiaCuttano/SAMWISE

Toward a Deeper Understanding: RetNet Viewed through Convolution

The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. ViT can learn global dependencies superior to CNN, yet CNN's inherent locality can substitute for expensive training resources. Recently, the outstanding performance of RetNet in the field of language modeling has garnered attention, surpassing that of the Transformer with explicit local modeling, shifting researchers' focus towards Transformers in the CV field. This paper investigates the effectiveness of RetNet from a CNN perspective and presents a variant of RetNet tailored to the visual domain. Similar to RetNet we improves ViT's local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code can be publicly available at https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention.

Token-Efficient Long Video Understanding for Multimodal LLMs

Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (Spatiotemporal TOken Reduction for Multimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5\% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to 8times and the decoding latency by 2.4-2.9times for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm

Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval

Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task, allowing for end-to-end optimization toward a unified global retrieval objective. However, existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively. While reinforcement learning-based methods, such as reinforcement learning from relevance feedback (RLRF), aim to address this misalignment through reward modeling, they introduce significant complexity, requiring the optimization of an auxiliary reward function followed by reinforcement fine-tuning, which is computationally expensive and often unstable. To address these challenges, we propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking, eliminating the need for explicit reward modeling and reinforcement learning. Experimental results on benchmark datasets, including MS MARCO document and Natural Questions, show that DDRO outperforms reinforcement learning-based methods, achieving a 7.4% improvement in MRR@10 for MS MARCO and a 19.9% improvement for Natural Questions. These findings highlight DDRO's potential to enhance retrieval effectiveness with a simplified optimization approach. By framing alignment as a direct optimization problem, DDRO simplifies the ranking optimization pipeline of GenIR models while offering a viable alternative to reinforcement learning-based methods.

Learning Robust Generalizable Radiance Field with Visibility and Feature Augmented Point Representation

This paper introduces a novel paradigm for the generalizable neural radiance field (NeRF). Previous generic NeRF methods combine multiview stereo techniques with image-based neural rendering for generalization, yielding impressive results, while suffering from three issues. First, occlusions often result in inconsistent feature matching. Then, they deliver distortions and artifacts in geometric discontinuities and locally sharp shapes due to their individual process of sampled points and rough feature aggregation. Third, their image-based representations experience severe degradations when source views are not near enough to the target view. To address challenges, we propose the first paradigm that constructs the generalizable neural field based on point-based rather than image-based rendering, which we call the Generalizable neural Point Field (GPF). Our approach explicitly models visibilities by geometric priors and augments them with neural features. We propose a novel nonuniform log sampling strategy to improve both rendering speed and reconstruction quality. Moreover, we present a learnable kernel spatially augmented with features for feature aggregations, mitigating distortions at places with drastically varying geometries. Besides, our representation can be easily manipulated. Experiments show that our model can deliver better geometries, view consistencies, and rendering quality than all counterparts and benchmarks on three datasets in both generalization and finetuning settings, preliminarily proving the potential of the new paradigm for generalizable NeRF.

Token-level Direct Preference Optimization

Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO incorporates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, TDPO enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO's superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods. Our code is open-sourced at https://github.com/Vance0124/Token-level-Direct-Preference-Optimization.

A Survey of Direct Preference Optimization

Large Language Models (LLMs) have demonstrated unprecedented generative capabilities, yet their alignment with human values remains critical for ensuring helpful and harmless deployments. While Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for aligning LLMs with human preferences, its reliance on complex reward modeling introduces inherent trade-offs in computational efficiency and training stability. In this context, Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative that directly optimizes LLMs using human preferences, thereby circumventing the need for explicit reward modeling. Owing to its theoretical elegance and computational efficiency, DPO has rapidly attracted substantial research efforts exploring its various implementations and applications. However, this field currently lacks systematic organization and comparative analysis. In this survey, we conduct a comprehensive overview of DPO and introduce a novel taxonomy, categorizing previous works into four key dimensions: data strategy, learning framework, constraint mechanism, and model property. We further present a rigorous empirical analysis of DPO variants across standardized benchmarks. Additionally, we discuss real-world applications, open challenges, and future directions for DPO. This work delivers both a conceptual framework for understanding DPO and practical guidance for practitioners, aiming to advance robust and generalizable alignment paradigms. All collected resources are available and will be continuously updated at https://github.com/liushunyu/awesome-direct-preference-optimization.

Generative Modeling with Explicit Memory

Recent studies indicate that the denoising process in deep generative diffusion models implicitly learns and memorizes semantic information from the data distribution. These findings suggest that capturing more complex data distributions requires larger neural networks, leading to a substantial increase in computational demands, which in turn become the primary bottleneck in both training and inference of diffusion models. To this end, we introduce Generative Modeling with Explicit Memory (GMem), leveraging an external memory bank in both training and sampling phases of diffusion models. This approach preserves semantic information from data distributions, reducing reliance on neural network capacity for learning and generalizing across diverse datasets. The results are significant: our GMem enhances both training, sampling efficiency, and generation quality. For instance, on ImageNet at 256 times 256 resolution, GMem accelerates SiT training by over 46.7times, achieving the performance of a SiT model trained for 7M steps in fewer than 150K steps. Compared to the most efficient existing method, REPA, GMem still offers a 16times speedup, attaining an FID score of 5.75 within 250K steps, whereas REPA requires over 4M steps. Additionally, our method achieves state-of-the-art generation quality, with an FID score of {3.56} without classifier-free guidance on ImageNet 256times256. Our code is available at https://github.com/LINs-lab/GMem.

ReVision: High-Quality, Low-Cost Video Generation with Explicit 3D Physics Modeling for Complex Motion and Interaction

In recent years, video generation has seen significant advancements. However, challenges still persist in generating complex motions and interactions. To address these challenges, we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized 3D physical knowledge into a pretrained conditional video generation model, significantly enhancing its ability to generate high-quality videos with complex motion and interactions. Specifically, ReVision consists of three stages. First, a video diffusion model is used to generate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video to construct a 3D object-centric representation, which is then refined by our proposed parameterized physical prior model to produce an accurate 3D motion sequence. Finally, this refined motion sequence is fed back into the same video diffusion model as additional conditioning, enabling the generation of motion-consistent videos, even in scenarios involving complex actions and interactions. We validate the effectiveness of our approach on Stable Video Diffusion, where ReVision significantly improves motion fidelity and coherence. Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video generation model with over 13B parameters on complex video generation by a substantial margin. Our results suggest that, by incorporating 3D physical knowledge, even a relatively small video diffusion model can generate complex motions and interactions with greater realism and controllability, offering a promising solution for physically plausible video generation.

ESTextSpotter: Towards Better Scene Text Spotting with Explicit Synergy in Transformer

In recent years, end-to-end scene text spotting approaches are evolving to the Transformer-based framework. While previous studies have shown the crucial importance of the intrinsic synergy between text detection and recognition, recent advances in Transformer-based methods usually adopt an implicit synergy strategy with shared query, which can not fully realize the potential of these two interactive tasks. In this paper, we argue that the explicit synergy considering distinct characteristics of text detection and recognition can significantly improve the performance text spotting. To this end, we introduce a new model named Explicit Synergy-based Text Spotting Transformer framework (ESTextSpotter), which achieves explicit synergy by modeling discriminative and interactive features for text detection and recognition within a single decoder. Specifically, we decompose the conventional shared query into task-aware queries for text polygon and content, respectively. Through the decoder with the proposed vision-language communication module, the queries interact with each other in an explicit manner while preserving discriminative patterns of text detection and recognition, thus improving performance significantly. Additionally, we propose a task-aware query initialization scheme to ensure stable training. Experimental results demonstrate that our model significantly outperforms previous state-of-the-art methods. Code is available at https://github.com/mxin262/ESTextSpotter.

Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction

We present a super-fast convergence approach to reconstructing the per-scene radiance field from a set of images that capture the scene with known poses. This task, which is often applied to novel view synthesis, is recently revolutionized by Neural Radiance Field (NeRF) for its state-of-the-art quality and flexibility. However, NeRF and its variants require a lengthy training time ranging from hours to days for a single scene. In contrast, our approach achieves NeRF-comparable quality and converges rapidly from scratch in less than 15 minutes with a single GPU. We adopt a representation consisting of a density voxel grid for scene geometry and a feature voxel grid with a shallow network for complex view-dependent appearance. Modeling with explicit and discretized volume representations is not new, but we propose two simple yet non-trivial techniques that contribute to fast convergence speed and high-quality output. First, we introduce the post-activation interpolation on voxel density, which is capable of producing sharp surfaces in lower grid resolution. Second, direct voxel density optimization is prone to suboptimal geometry solutions, so we robustify the optimization process by imposing several priors. Finally, evaluation on five inward-facing benchmarks shows that our method matches, if not surpasses, NeRF's quality, yet it only takes about 15 minutes to train from scratch for a new scene.

From One to More: Contextual Part Latents for 3D Generation

Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.

Exploiting Contextual Target Attributes for Target Sentiment Classification

Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task. In this paper, we present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes. Specifically, we design the domain- and target-constrained cloze test, which can leverage the PTLMs' strong language modeling ability to generate the given target's attributes pertaining to the review context. The attributes contain the background and property information of the target, which can help to enrich the semantics of the review context and the target. To exploit the attributes for tackling TSC, we first construct a heterogeneous information graph by treating the attributes as nodes and combining them with (1) the syntax graph automatically produced by the off-the-shelf dependency parser and (2) the semantics graph of the review context, which is derived from the self-attention mechanism. Then we propose a heterogeneous information gated graph convolutional network to model the interactions among the attribute information, the syntactic information, and the contextual information. The experimental results on three benchmark datasets demonstrate the superiority of our model, which achieves new state-of-the-art performance.

DBConformer: Dual-Branch Convolutional Transformer for EEG Decoding

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) transform spontaneous/evoked neural activity into control commands for external communication. While convolutional neural networks (CNNs) remain the mainstream backbone for EEG decoding, their inherently short receptive field makes it difficult to capture long-range temporal dependencies and global inter-channel relationships. Recent CNN-Transformer (Conformers) hybrids partially address this issue, but most adopt a serial design, resulting in suboptimal integration of local and global features, and often overlook explicit channel-wise modeling. To address these limitations, we propose DBConformer, a dual-branch convolutional Transformer network tailored for EEG decoding. It integrates a temporal Conformer to model long-range temporal dependencies and a spatial Conformer to extract inter-channel interactions, capturing both temporal dynamics and spatial patterns in EEG signals. A lightweight channel attention module further refines spatial representations by assigning data-driven importance to EEG channels. Extensive experiments on five motor imagery (MI) datasets and two seizure detection datasets under three evaluation settings demonstrate that DBConformer consistently outperforms 10 competitive baseline models, with over eight times fewer parameters than the high-capacity EEG Conformer baseline. Further, the visualization results confirm that the features extracted by DBConformer are physiologically interpretable and aligned with sensorimotor priors in MI. The superior performance and interpretability of DBConformer make it reliable for robust and explainable EEG decoding. Code is publicized at https://github.com/wzwvv/DBConformer.

Street Gaussians for Modeling Dynamic Urban Scenes

This paper aims to tackle the problem of modeling dynamic urban street scenes from monocular videos. Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view synthesis of dynamic urban street scenes. However, significant limitations are their slow training and rendering speed, coupled with the critical need for high precision in tracked vehicle poses. We introduce Street Gaussians, a new explicit scene representation that tackles all these limitations. Specifically, the dynamic urban street is represented as a set of point clouds equipped with semantic logits and 3D Gaussians, each associated with either a foreground vehicle or the background. To model the dynamics of foreground object vehicles, each object point cloud is optimized with optimizable tracked poses, along with a dynamic spherical harmonics model for the dynamic appearance. The explicit representation allows easy composition of object vehicles and background, which in turn allows for scene editing operations and rendering at 133 FPS (1066times1600 resolution) within half an hour of training. The proposed method is evaluated on multiple challenging benchmarks, including KITTI and Waymo Open datasets. Experiments show that the proposed method consistently outperforms state-of-the-art methods across all datasets. Furthermore, the proposed representation delivers performance on par with that achieved using precise ground-truth poses, despite relying only on poses from an off-the-shelf tracker. The code is available at https://zju3dv.github.io/street_gaussians/.

Apollo: Band-sequence Modeling for High-Quality Audio Restoration

Audio restoration has become increasingly significant in modern society, not only due to the demand for high-quality auditory experiences enabled by advanced playback devices, but also because the growing capabilities of generative audio models necessitate high-fidelity audio. Typically, audio restoration is defined as a task of predicting undistorted audio from damaged input, often trained using a GAN framework to balance perception and distortion. Since audio degradation is primarily concentrated in mid- and high-frequency ranges, especially due to codecs, a key challenge lies in designing a generator capable of preserving low-frequency information while accurately reconstructing high-quality mid- and high-frequency content. Inspired by recent advancements in high-sample-rate music separation, speech enhancement, and audio codec models, we propose Apollo, a generative model designed for high-sample-rate audio restoration. Apollo employs an explicit frequency band split module to model the relationships between different frequency bands, allowing for more coherent and higher-quality restored audio. Evaluated on the MUSDB18-HQ and MoisesDB datasets, Apollo consistently outperforms existing SR-GAN models across various bit rates and music genres, particularly excelling in complex scenarios involving mixtures of multiple instruments and vocals. Apollo significantly improves music restoration quality while maintaining computational efficiency. The source code for Apollo is publicly available at https://github.com/JusperLee/Apollo.

HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling

Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: https://anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity.

Dynamic Chunking for End-to-End Hierarchical Sequence Modeling

Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.

CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling

The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.

Robust Reward Modeling via Causal Rubrics

Reward models (RMs) are fundamental to aligning Large Language Models (LLMs) via human feedback, yet they often suffer from reward hacking. They tend to latch on to superficial or spurious attributes, such as response length or formatting, mistaking these cues learned from correlations in training data for the true causal drivers of quality (e.g., factuality, relevance). This occurs because standard training objectives struggle to disentangle these factors, leading to brittle RMs and misaligned policies. We introduce Crome (Causally Robust Reward Modeling), a novel framework grounded in an explicit causal model designed to mitigate reward hacking. Crome employs the following synthetic targeted augmentations during training: (1) Causal Augmentations, which are pairs that differ along specific causal attributes, to enforce sensitivity along each causal attribute individually, and (2) Neutral Augmentations, which are tie-label pairs varying primarily in spurious attributes, to enforce invariance along spurious attributes. Notably, our augmentations are produced without any knowledge of spurious factors, via answer interventions only along causal rubrics, that are identified by querying an oracle LLM. Empirically, Crome significantly outperforms standard baselines on RewardBench, improving average accuracy by up to 5.4% and achieving gains of up to 13.2% and 7.2% in specific categories. The robustness of Crome is further testified by the consistent gains obtained in a Best-of-N inference setting across increasing N, across various benchmarks, including the popular RewardBench (covering chat, chat-hard, safety, and reasoning tasks), the safety-focused WildGuardTest, and the reasoning-specific GSM8k.

LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction

Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.

Atmospheric Transport Modeling of CO$_2$ with Neural Networks

Accurately describing the distribution of CO_2 in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench dataset, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO_2. More specifically, we center CO_2 input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill (90-day R^2 > 0.99), with physically plausible emulation even for forward runs of multiple years. This work paves the way forward towards high resolution forward and inverse modeling of inert trace gases with neural networks.

NSF: Neural Surface Fields for Human Modeling from Monocular Depth

Obtaining personalized 3D animatable avatars from a monocular camera has several real world applications in gaming, virtual try-on, animation, and VR/XR, etc. However, it is very challenging to model dynamic and fine-grained clothing deformations from such sparse data. Existing methods for modeling 3D humans from depth data have limitations in terms of computational efficiency, mesh coherency, and flexibility in resolution and topology. For instance, reconstructing shapes using implicit functions and extracting explicit meshes per frame is computationally expensive and cannot ensure coherent meshes across frames. Moreover, predicting per-vertex deformations on a pre-designed human template with a discrete surface lacks flexibility in resolution and topology. To overcome these limitations, we propose a novel method `\keyfeature: Neural Surface Fields' for modeling 3D clothed humans from monocular depth. NSF defines a neural field solely on the base surface which models a continuous and flexible displacement field. NSF can be adapted to the base surface with different resolution and topology without retraining at inference time. Compared to existing approaches, our method eliminates the expensive per-frame surface extraction while maintaining mesh coherency, and is capable of reconstructing meshes with arbitrary resolution without retraining. To foster research in this direction, we release our code in project page at: https://yuxuan-xue.com/nsf.

Adapters for Enhanced Modeling of Multilingual Knowledge and Text

Large language models appear to learn facts from the large text corpora they are trained on. Such facts are encoded implicitly within their many parameters, making it difficult to verify or manipulate what knowledge has been learned. Language models have recently been extended to multilingual language models (MLLMs), enabling knowledge to be learned across hundreds of languages. Meanwhile, knowledge graphs contain facts in an explicit triple format, which require careful and costly curation and are only available in a few high-resource languages, restricting their research and application. To address these issues, we propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages, including low-resource ones. Specifically, we introduce a lightweight adapter set to enhance MLLMs with cross-lingual entity alignment and facts from MLKGs for many languages. Experiments on common benchmarks show that such enhancement benefits both MLLMs and MLKGs, achieving: (1) comparable or improved performance for knowledge graph completion and entity alignment relative to baselines, especially for low-resource languages (for which knowledge graphs are unavailable); and (2) improved MLLM performance on language understanding tasks that require multilingual factual knowledge; all while maintaining performance on other general language tasks.

Large Concept Models: Language Modeling in a Sentence Representation Space

LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single words, to analyze information and to generate creative content. In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept. Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow. Hence, we build a "Large Concept Model". In this study, as proof of feasibility, we assume that a concept corresponds to a sentence, and use an existing sentence embedding space, SONAR, which supports up to 200 languages in both text and speech modalities. The Large Concept Model is trained to perform autoregressive sentence prediction in an embedding space. We explore multiple approaches, namely MSE regression, variants of diffusion-based generation, and models operating in a quantized SONAR space. These explorations are performed using 1.6B parameter models and training data in the order of 1.3T tokens. We then scale one architecture to a model size of 7B parameters and training data of about 2.7T tokens. We perform an experimental evaluation on several generative tasks, namely summarization and a new task of summary expansion. Finally, we show that our model exhibits impressive zero-shot generalization performance to many languages, outperforming existing LLMs of the same size. The training code of our models is freely available.

MiCRo: Mixture Modeling and Context-aware Routing for Personalized Preference Learning

Reward modeling is a key step in building safe foundation models when applying reinforcement learning from human feedback (RLHF) to align Large Language Models (LLMs). However, reward modeling based on the Bradley-Terry (BT) model assumes a global reward function, failing to capture the inherently diverse and heterogeneous human preferences. Hence, such oversimplification limits LLMs from supporting personalization and pluralistic alignment. Theoretically, we show that when human preferences follow a mixture distribution of diverse subgroups, a single BT model has an irreducible error. While existing solutions, such as multi-objective learning with fine-grained annotations, help address this issue, they are costly and constrained by predefined attributes, failing to fully capture the richness of human values. In this work, we introduce MiCRo, a two-stage framework that enhances personalized preference learning by leveraging large-scale binary preference datasets without requiring explicit fine-grained annotations. In the first stage, MiCRo introduces context-aware mixture modeling approach to capture diverse human preferences. In the second stage, MiCRo integrates an online routing strategy that dynamically adapts mixture weights based on specific context to resolve ambiguity, allowing for efficient and scalable preference adaptation with minimal additional supervision. Experiments on multiple preference datasets demonstrate that MiCRo effectively captures diverse human preferences and significantly improves downstream personalization.

GS-LTS: 3D Gaussian Splatting-Based Adaptive Modeling for Long-Term Service Robots

3D Gaussian Splatting (3DGS) has garnered significant attention in robotics for its explicit, high fidelity dense scene representation, demonstrating strong potential for robotic applications. However, 3DGS-based methods in robotics primarily focus on static scenes, with limited attention to the dynamic scene changes essential for long-term service robots. These robots demand sustained task execution and efficient scene updates-challenges current approaches fail to meet. To address these limitations, we propose GS-LTS (Gaussian Splatting for Long-Term Service), a 3DGS-based system enabling indoor robots to manage diverse tasks in dynamic environments over time. GS-LTS detects scene changes (e.g., object addition or removal) via single-image change detection, employs a rule-based policy to autonomously collect multi-view observations, and efficiently updates the scene representation through Gaussian editing. Additionally, we propose a simulation-based benchmark that automatically generates scene change data as compact configuration scripts, providing a standardized, user-friendly evaluation benchmark. Experimental results demonstrate GS-LTS's advantages in reconstruction, navigation, and superior scene updates-faster and higher quality than the image training baseline-advancing 3DGS for long-term robotic operations. Code and benchmark are available at: https://vipl-vsu.github.io/3DGS-LTS.

Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning

Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones. However, in 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant. This raises the question: Can we take the best of both worlds? To answer this question, we first empirically validate that integrating MAE-based point cloud pre-training with the standard contrastive learning paradigm, even with meticulous design, can lead to a decrease in performance. To address this limitation, we reintroduce CL into the MAE-based point cloud pre-training paradigm by leveraging the inherent contrastive properties of MAE. Specifically, rather than relying on extensive data augmentation as commonly used in the image domain, we randomly mask the input tokens twice to generate contrastive input pairs. Subsequently, a weight-sharing encoder and two identically structured decoders are utilized to perform masked token reconstruction. Additionally, we propose that for an input token masked by both masks simultaneously, the reconstructed features should be as similar as possible. This naturally establishes an explicit contrastive constraint within the generative MAE-based pre-training paradigm, resulting in our proposed method, Point-CMAE. Consequently, Point-CMAE effectively enhances the representation quality and transfer performance compared to its MAE counterpart. Experimental evaluations across various downstream applications, including classification, part segmentation, and few-shot learning, demonstrate the efficacy of our framework in surpassing state-of-the-art techniques under standard ViTs and single-modal settings. The source code and trained models are available at: https://github.com/Amazingren/Point-CMAE.

A Markov Categorical Framework for Language Modeling

Auto-regressive language models factorize sequence probabilities and are trained by minimizing the negative log-likelihood (NLL) objective. While empirically powerful, a deep theoretical understanding of why this simple objective yields such versatile representations remains elusive. This work introduces a unifying analytical framework using Markov Categories (MCs) to deconstruct the AR generation process and the NLL objective. We model the single-step generation map as a composition of Markov kernels in the category Stoch. This compositional view, when enriched with statistical divergences, allows us to dissect information flow and learned geometry. Our framework makes three main contributions. First, we provide a formal, information-theoretic rationale for the success of modern speculative decoding methods like EAGLE, quantifying the information surplus in hidden states that these methods exploit. Second, we formalize how NLL minimization forces the model to learn not just the next token, but the data's intrinsic conditional stochasticity, a process we analyze using categorical entropy. Third, and most centrally, we prove that NLL training acts as an implicit form of spectral contrastive learning. By analyzing the information geometry of the model's prediction head, we show that NLL implicitly forces the learned representation space to align with the eigenspectrum of a predictive similarity operator, thereby learning a geometrically structured space without explicit contrastive pairs. This compositional and information-geometric perspective reveals the deep structural principles underlying the effectiveness of modern LMs. Project Page: https://github.com/asiresearch/lm-theory

NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations

Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.

FuXi-RTM: A Physics-Guided Prediction Framework with Radiative Transfer Modeling

Similar to conventional video generation, current deep learning-based weather prediction frameworks often lack explicit physical constraints, leading to unphysical outputs that limit their reliability for operational forecasting. Among various physical processes requiring proper representation, radiation plays a fundamental role as it drives Earth's weather and climate systems. However, accurate simulation of radiative transfer processes remains challenging for traditional numerical weather prediction (NWP) models due to their inherent complexity and high computational costs. Here, we propose FuXi-RTM, a hybrid physics-guided deep learning framework designed to enhance weather forecast accuracy while enforcing physical consistency. FuXi-RTM integrates a primary forecasting model (FuXi) with a fixed deep learning-based radiative transfer model (DLRTM) surrogate that efficiently replaces conventional radiation parameterization schemes. This represents the first deep learning-based weather forecasting framework to explicitly incorporate physical process modeling. Evaluated over a comprehensive 5-year dataset, FuXi-RTM outperforms its unconstrained counterpart in 88.51% of 3320 variable and lead time combinations, with improvements in radiative flux predictions. By incorporating additional physical processes, FuXi-RTM paves the way for next-generation weather forecasting systems that are both accurate and physically consistent.

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.

IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from Monocular Videos via Explicit Ray Tracing

We present IntrinsicAvatar, a novel approach to recovering the intrinsic properties of clothed human avatars including geometry, albedo, material, and environment lighting from only monocular videos. Recent advancements in human-based neural rendering have enabled high-quality geometry and appearance reconstruction of clothed humans from just monocular videos. However, these methods bake intrinsic properties such as albedo, material, and environment lighting into a single entangled neural representation. On the other hand, only a handful of works tackle the problem of estimating geometry and disentangled appearance properties of clothed humans from monocular videos. They usually achieve limited quality and disentanglement due to approximations of secondary shading effects via learned MLPs. In this work, we propose to model secondary shading effects explicitly via Monte-Carlo ray tracing. We model the rendering process of clothed humans as a volumetric scattering process, and combine ray tracing with body articulation. Our approach can recover high-quality geometry, albedo, material, and lighting properties of clothed humans from a single monocular video, without requiring supervised pre-training using ground truth materials. Furthermore, since we explicitly model the volumetric scattering process and ray tracing, our model naturally generalizes to novel poses, enabling animation of the reconstructed avatar in novel lighting conditions.

MM-Agent: LLM as Agents for Real-world Mathematical Modeling Problem

Mathematical modeling is a cornerstone of scientific discovery and engineering practice, enabling the translation of real-world problems into formal systems across domains such as physics, biology, and economics. Unlike mathematical reasoning, which assumes a predefined formulation, modeling requires open-ended problem analysis, abstraction, and principled formalization. While Large Language Models (LLMs) have shown strong reasoning capabilities, they fall short in rigorous model construction, limiting their utility in real-world problem-solving. To this end, we formalize the task of LLM-powered real-world mathematical modeling, where agents must analyze problems, construct domain-appropriate formulations, and generate complete end-to-end solutions. We introduce MM-Bench, a curated benchmark of 111 problems from the Mathematical Contest in Modeling (MCM/ICM), spanning the years 2000 to 2025 and across ten diverse domains such as physics, biology, and economics. To tackle this task, we propose MM-Agent, an expert-inspired framework that decomposes mathematical modeling into four stages: open-ended problem analysis, structured model formulation, computational problem solving, and report generation. Experiments on MM-Bench show that MM-Agent significantly outperforms baseline agents, achieving an 11.88\% improvement over human expert solutions while requiring only 15 minutes and \$0.88 per task using GPT-4o. Furthermore, under official MCM/ICM protocols, MM-Agent assisted two undergraduate teams in winning the Finalist Award (top 2.0\% among 27,456 teams) in MCM/ICM 2025, demonstrating its practical effectiveness as a modeling copilot. Our code is available at https://github.com/usail-hkust/LLM-MM-Agent

Mamo: a Mathematical Modeling Benchmark with Solvers

Mathematical modeling involves representing real-world phenomena, systems, or problems using mathematical expressions and equations to analyze, understand, and predict their behavior. Given that this process typically requires experienced experts, there is an interest in exploring whether Large Language Models (LLMs) can undertake mathematical modeling to potentially decrease human labor. To evaluate of LLMs in mathematical modeling, we introduce a new benchmark, Mamo, that transcends traditional result-oriented assessments. Unlike conventional methods that primarily assess LLMs based on the accuracy of solutions to mathematical problems, our approach offers deeper insight into the modeling process itself. By focusing on the processes LLMs undertake rather than the correctness of their final solutions, Mamo pioneers a novel evaluation paradigm. This shift underscores the importance of understanding the inherent modeling capabilities of LLMs, paving the way for a more nuanced and comprehensive analysis of their problem-solving strategies. Our work marks a significant advancement in the field, suggesting a new direction for future research by emphasizing the evaluation of LLMs' modeling processes over the mere correctness of answers. This benchmark not only facilitates a better understanding of LLMs' mathematical modeling capabilities but also sets a new standard for evaluating their performance in complex problem-solving scenarios.

ASID: Active Exploration for System Identification in Robotic Manipulation

Model-free control strategies such as reinforcement learning have shown the ability to learn control strategies without requiring an accurate model or simulator of the world. While this is appealing due to the lack of modeling requirements, such methods can be sample inefficient, making them impractical in many real-world domains. On the other hand, model-based control techniques leveraging accurate simulators can circumvent these challenges and use a large amount of cheap simulation data to learn controllers that can effectively transfer to the real world. The challenge with such model-based techniques is the requirement for an extremely accurate simulation, requiring both the specification of appropriate simulation assets and physical parameters. This requires considerable human effort to design for every environment being considered. In this work, we propose a learning system that can leverage a small amount of real-world data to autonomously refine a simulation model and then plan an accurate control strategy that can be deployed in the real world. Our approach critically relies on utilizing an initial (possibly inaccurate) simulator to design effective exploration policies that, when deployed in the real world, collect high-quality data. We demonstrate the efficacy of this paradigm in identifying articulation, mass, and other physical parameters in several challenging robotic manipulation tasks, and illustrate that only a small amount of real-world data can allow for effective sim-to-real transfer. Project website at https://weirdlabuw.github.io/asid

MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems

We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.

PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers

Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.

DeepMesh: Differentiable Iso-Surface Extraction

Geometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes algorithm, which cannot be differentiated with respect to the underlying implicit field. In this work, we remove this limitation and introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields. Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples with respect to the underlying deep implicit field. We exploit this to define DeepMesh - an end-to-end differentiable mesh representation that can vary its topology. We validate our theoretical insight through several applications: Single view 3D Reconstruction via Differentiable Rendering, Physically-Driven Shape Optimization, Full Scene 3D Reconstruction from Scans and End-to-End Training. In all cases our end-to-end differentiable parameterization gives us an edge over state-of-the-art algorithms.

LifeGPT: Topology-Agnostic Generative Pretrained Transformer Model for Cellular Automata

The Game of Life (Life), a well known algorithm within the broader class of cellular automata (CA), exhibits complex emergent dynamics, with extreme sensitivity to initial conditions. Modeling and predicting such intricate behavior without explicit knowledge of the system's underlying topology presents a significant challenge, motivating the development of algorithms that can generalize across various grid configurations and boundary conditions. We develop a decoder-only generative pretrained transformer model to solve this problem, showing that our model can simulate Life on a toroidal grid with no prior knowledge on the size of the grid, or its periodic boundary conditions (LifeGPT). LifeGPT is topology-agnostic with respect to its training data and our results show that a GPT model is capable of capturing the deterministic rules of a Turing-complete system with near-perfect accuracy, given sufficiently diverse training data. We also introduce the idea of an `autoregressive autoregressor' to recursively implement Life using LifeGPT. Our results pave the path towards true universal computation within a large language model (LLM) framework, synthesizing of mathematical analysis with natural language processing, and probing AI systems for situational awareness about the evolution of such algorithms without ever having to compute them. Similar GPTs could potentially solve inverse problems in multicellular self-assembly by extracting CA-compatible rulesets from real-world biological systems to create new predictive models, which would have significant consequences for the fields of bioinspired materials, tissue engineering, and architected materials design.

Compositional Visual Generation with Composable Diffusion Models

Large text-guided diffusion models, such as DALLE-2, are able to generate stunning photorealistic images given natural language descriptions. While such models are highly flexible, they struggle to understand the composition of certain concepts, such as confusing the attributes of different objects or relations between objects. In this paper, we propose an alternative structured approach for compositional generation using diffusion models. An image is generated by composing a set of diffusion models, with each of them modeling a certain component of the image. To do this, we interpret diffusion models as energy-based models in which the data distributions defined by the energy functions may be explicitly combined. The proposed method can generate scenes at test time that are substantially more complex than those seen in training, composing sentence descriptions, object relations, human facial attributes, and even generalizing to new combinations that are rarely seen in the real world. We further illustrate how our approach may be used to compose pre-trained text-guided diffusion models and generate photorealistic images containing all the details described in the input descriptions, including the binding of certain object attributes that have been shown difficult for DALLE-2. These results point to the effectiveness of the proposed method in promoting structured generalization for visual generation. Project page: https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/

A Reliable Knowledge Processing Framework for Combustion Science using Foundation Models

This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.

Observatory: Characterizing Embeddings of Relational Tables

Language models and specialized table embedding models have recently demonstrated strong performance on many tasks over tabular data. Researchers and practitioners are keen to leverage these models in many new application contexts; but limited understanding of the strengths and weaknesses of these models, and the table representations they generate, makes the process of finding a suitable model for a given task reliant on trial and error. There is an urgent need to gain a comprehensive understanding of these models to minimize inefficiency and failures in downstream usage. To address this need, we propose Observatory, a formal framework to systematically analyze embedding representations of relational tables. Motivated both by invariants of the relational data model and by statistical considerations regarding data distributions, we define eight primitive properties, and corresponding measures to quantitatively characterize table embeddings for these properties. Based on these properties, we define an extensible framework to evaluate language and table embedding models. We collect and synthesize a suite of datasets and use Observatory to analyze nine such models. Our analysis provides insights into the strengths and weaknesses of learned representations over tables. We find, for example, that some models are sensitive to table structure such as column order, that functional dependencies are rarely reflected in embeddings, and that specialized table embedding models have relatively lower sample fidelity. Such insights help researchers and practitioners better anticipate model behaviors and select appropriate models for their downstream tasks, while guiding researchers in the development of new models.

Experiments with Large Language Models on Retrieval-Augmented Generation for Closed-Source Simulation Software

Large Language Models (LLMs) are increasingly helpful in text generation, even writing code in programming languages based on user prompts written in natural language. They are even applied to generate simulation models for multibody systems from natural language. Research results suggest that LLMs surpass the mere replication of existing code examples, where some LLMs have been trained on an open-source multibody simulation code. However, for closed-source simulation software, such results are not to be expected as their ideas and concepts might differ from other publicly available ones. LLMs can hallucinate for knowledge-intensive tasks, such as model creation, which can lead to wrong responses. This is especially the case for the LLM unknown closed-source simulation software. The same applies to other internal knowledge kept private to protect intellectual property or data privacy. The Retrieval-Augmented Generation (RAG) approach might yield a solution for these knowledge-intensive tasks. This paper explores the application of RAG to closed-source simulation software and presents first experiments. After a brief introduction to LLMs, the RAG approach, and the simulation method applied by the close-source simulation software, several examples are provided to test LLMs' knowledge of the simulation software and the creation of simulation models using two RAG systems. The examples show promising results indicating the benefits of applying RAG systems to closed-source simulation software, helping to access their knowledge. Nevertheless, they also reveal gaps in the applied information and open questions for further research.

AGTGAN: Unpaired Image Translation for Photographic Ancient Character Generation

The study of ancient writings has great value for archaeology and philology. Essential forms of material are photographic characters, but manual photographic character recognition is extremely time-consuming and expertise-dependent. Automatic classification is therefore greatly desired. However, the current performance is limited due to the lack of annotated data. Data generation is an inexpensive but useful solution for data scarcity. Nevertheless, the diverse glyph shapes and complex background textures of photographic ancient characters make the generation task difficult, leading to the unsatisfactory results of existing methods. In this paper, we propose an unsupervised generative adversarial network called AGTGAN. By the explicit global and local glyph shape style modeling followed by the stroke-aware texture transfer, as well as an associate adversarial learning mechanism, our method can generate characters with diverse glyphs and realistic textures. We evaluate our approach on the photographic ancient character datasets, e.g., OBC306 and CSDD. Our method outperforms the state-of-the-art approaches in various metrics and performs much better in terms of the diversity and authenticity of generated samples. With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.

4D Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes

We consider the problem of novel view synthesis (NVS) for dynamic scenes. Recent neural approaches have accomplished exceptional NVS results for static 3D scenes, but extensions to 4D time-varying scenes remain non-trivial. Prior efforts often encode dynamics by learning a canonical space plus implicit or explicit deformation fields, which struggle in challenging scenarios like sudden movements or capturing high-fidelity renderings. In this paper, we introduce 4D Gaussian Splatting (4DGS), a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians, inspired by the success of 3D Gaussian Splatting in static scenes. We model dynamics at each timestamp by temporally slicing the 4D Gaussians, which naturally compose dynamic 3D Gaussians and can be seamlessly projected into images. As an explicit spatial-temporal representation, 4DGS demonstrates powerful capabilities for modeling complicated dynamics and fine details, especially for scenes with abrupt motions. We further implement our temporal slicing and splatting techniques in a highly optimized CUDA acceleration framework, achieving real-time inference rendering speeds of up to 277 FPS on an RTX 3090 GPU and 583 FPS on an RTX 4090 GPU. Rigorous evaluations on scenes with diverse motions showcase the superior efficiency and effectiveness of 4DGS, which consistently outperforms existing methods both quantitatively and qualitatively.

Text Is All You Need: Learning Language Representations for Sequential Recommendation

Sequential recommendation aims to model dynamic user behavior from historical interactions. Existing methods rely on either explicit item IDs or general textual features for sequence modeling to understand user preferences. While promising, these approaches still struggle to model cold-start items or transfer knowledge to new datasets. In this paper, we propose to model user preferences and item features as language representations that can be generalized to new items and datasets. To this end, we present a novel framework, named Recformer, which effectively learns language representations for sequential recommendation. Specifically, we propose to formulate an item as a "sentence" (word sequence) by flattening item key-value attributes described by text so that an item sequence for a user becomes a sequence of sentences. For recommendation, Recformer is trained to understand the "sentence" sequence and retrieve the next "sentence". To encode item sequences, we design a bi-directional Transformer similar to the model Longformer but with different embedding layers for sequential recommendation. For effective representation learning, we propose novel pretraining and finetuning methods which combine language understanding and recommendation tasks. Therefore, Recformer can effectively recommend the next item based on language representations. Extensive experiments conducted on six datasets demonstrate the effectiveness of Recformer for sequential recommendation, especially in low-resource and cold-start settings.

Physics-guided Noise Neural Proxy for Practical Low-light Raw Image Denoising

Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-guided noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-guided proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the generated noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The code will be available at https://github.com/fenghansen/PNNP.

Moshi: a speech-text foundation model for real-time dialogue

We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning -- such as emotion or non-speech sounds -- is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this "Inner Monologue" method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at https://github.com/kyutai-labs/moshi.

Pre-training Language Model as a Multi-perspective Course Learner

ELECTRA, the generator-discriminator pre-training framework, has achieved impressive semantic construction capability among various downstream tasks. Despite the convincing performance, ELECTRA still faces the challenges of monotonous training and deficient interaction. Generator with only masked language modeling (MLM) leads to biased learning and label imbalance for discriminator, decreasing learning efficiency; no explicit feedback loop from discriminator to generator results in the chasm between these two components, underutilizing the course learning. In this study, a multi-perspective course learning (MCL) method is proposed to fetch a many degrees and visual angles for sample-efficient pre-training, and to fully leverage the relationship between generator and discriminator. Concretely, three self-supervision courses are designed to alleviate inherent flaws of MLM and balance the label in a multi-perspective way. Besides, two self-correction courses are proposed to bridge the chasm between the two encoders by creating a "correction notebook" for secondary-supervision. Moreover, a course soups trial is conducted to solve the "tug-of-war" dynamics problem of MCL, evolving a stronger pre-trained model. Experimental results show that our method significantly improves ELECTRA's average performance by 2.8% and 3.2% absolute points respectively on GLUE and SQuAD 2.0 benchmarks, and overshadows recent advanced ELECTRA-style models under the same settings. The pre-trained MCL model is available at https://huggingface.co/McmanusChen/MCL-base.

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Despite broad interest in modeling spoken dialogue agents, most approaches are inherently "half-duplex" -- restricted to turn-based interaction with responses requiring explicit prompting by the user or implicit tracking of interruption or silence events. Human dialogue, by contrast, is "full-duplex" allowing for rich synchronicity in the form of quick and dynamic turn-taking, overlapping speech, and backchanneling. Technically, the challenge of achieving full-duplex dialogue with LLMs lies in modeling synchrony as pre-trained LLMs do not have a sense of "time". To bridge this gap, we propose Synchronous LLMs for full-duplex spoken dialogue modeling. We design a novel mechanism to integrate time information into Llama3-8b so that they run synchronously with the real-world clock. We also introduce a training recipe that uses 212k hours of synthetic spoken dialogue data generated from text dialogue data to create a model that generates meaningful and natural spoken dialogue, with just 2k hours of real-world spoken dialogue data. Synchronous LLMs outperform state-of-the-art in dialogue meaningfulness while maintaining naturalness. Finally, we demonstrate the model's ability to participate in full-duplex dialogue by simulating interaction between two agents trained on different datasets, while considering Internet-scale latencies of up to 240 ms. Webpage: https://syncllm.cs.washington.edu/.

Learning Disentangled Avatars with Hybrid 3D Representations

Tremendous efforts have been made to learn animatable and photorealistic human avatars. Towards this end, both explicit and implicit 3D representations are heavily studied for a holistic modeling and capture of the whole human (e.g., body, clothing, face and hair), but neither representation is an optimal choice in terms of representation efficacy since different parts of the human avatar have different modeling desiderata. For example, meshes are generally not suitable for modeling clothing and hair. Motivated by this, we present Disentangled Avatars~(DELTA), which models humans with hybrid explicit-implicit 3D representations. DELTA takes a monocular RGB video as input, and produces a human avatar with separate body and clothing/hair layers. Specifically, we demonstrate two important applications for DELTA. For the first one, we consider the disentanglement of the human body and clothing and in the second, we disentangle the face and hair. To do so, DELTA represents the body or face with an explicit mesh-based parametric 3D model and the clothing or hair with an implicit neural radiance field. To make this possible, we design an end-to-end differentiable renderer that integrates meshes into volumetric rendering, enabling DELTA to learn directly from monocular videos without any 3D supervision. Finally, we show that how these two applications can be easily combined to model full-body avatars, such that the hair, face, body and clothing can be fully disentangled yet jointly rendered. Such a disentanglement enables hair and clothing transfer to arbitrary body shapes. We empirically validate the effectiveness of DELTA's disentanglement by demonstrating its promising performance on disentangled reconstruction, virtual clothing try-on and hairstyle transfer. To facilitate future research, we also release an open-sourced pipeline for the study of hybrid human avatar modeling.

Aligning Language Models Using Follow-up Likelihood as Reward Signal

In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.

UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation

Typical inverse rendering methods focus on learning implicit neural scene representations by modeling the geometry, materials and illumination separately, which entails significant computations for optimization. In this work we design a Unified Voxelization framework for explicit learning of scene representations, dubbed UniVoxel, which allows for efficient modeling of the geometry, materials and illumination jointly, thereby accelerating the inverse rendering significantly. To be specific, we propose to encode a scene into a latent volumetric representation, based on which the geometry, materials and illumination can be readily learned via lightweight neural networks in a unified manner. Particularly, an essential design of UniVoxel is that we leverage local Spherical Gaussians to represent the incident light radiance, which enables the seamless integration of modeling illumination into the unified voxelization framework. Such novel design enables our UniVoxel to model the joint effects of direct lighting, indirect lighting and light visibility efficiently without expensive multi-bounce ray tracing. Extensive experiments on multiple benchmarks covering diverse scenes demonstrate that UniVoxel boosts the optimization efficiency significantly compared to other methods, reducing the per-scene training time from hours to 18 minutes, while achieving favorable reconstruction quality. Code is available at https://github.com/freemantom/UniVoxel.

A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision and Touch

Multi-fingered robotic hands have potential to enable robots to perform sophisticated manipulation tasks. However, teaching a robot to grasp objects with an anthropomorphic hand is an arduous problem due to the high dimensionality of state and action spaces. Deep Reinforcement Learning (DRL) offers techniques to design control policies for this kind of problems without explicit environment or hand modeling. However, state-of-the-art model-free algorithms have proven inefficient for learning such policies. The main problem is that the exploration of the environment is unfeasible for such high-dimensional problems, thus hampering the initial phases of policy optimization. One possibility to address this is to rely on off-line task demonstrations, but, oftentimes, this is too demanding in terms of time and computational resources. To address these problems, we propose the A Grasp Pose is All You Need (G-PAYN) method for the anthropomorphic hand of the iCub humanoid. We develop an approach to automatically collect task demonstrations to initialize the training of the policy. The proposed grasping pipeline starts from a grasp pose generated by an external algorithm, used to initiate the movement. Then a control policy (previously trained with the proposed G-PAYN) is used to reach and grab the object. We deployed the iCub into the MuJoCo simulator and use it to test our approach with objects from the YCB-Video dataset. Results show that G-PAYN outperforms current DRL techniques in the considered setting in terms of success rate and execution time with respect to the baselines. The code to reproduce the experiments is released together with the paper with an open source license.

Dynamic Point Fields

Recent years have witnessed significant progress in the field of neural surface reconstruction. While the extensive focus was put on volumetric and implicit approaches, a number of works have shown that explicit graphics primitives such as point clouds can significantly reduce computational complexity, without sacrificing the reconstructed surface quality. However, less emphasis has been put on modeling dynamic surfaces with point primitives. In this work, we present a dynamic point field model that combines the representational benefits of explicit point-based graphics with implicit deformation networks to allow efficient modeling of non-rigid 3D surfaces. Using explicit surface primitives also allows us to easily incorporate well-established constraints such as-isometric-as-possible regularisation. While learning this deformation model is prone to local optima when trained in a fully unsupervised manner, we propose to additionally leverage semantic information such as keypoint dynamics to guide the deformation learning. We demonstrate our model with an example application of creating an expressive animatable human avatar from a collection of 3D scans. Here, previous methods mostly rely on variants of the linear blend skinning paradigm, which fundamentally limits the expressivity of such models when dealing with complex cloth appearances such as long skirts. We show the advantages of our dynamic point field framework in terms of its representational power, learning efficiency, and robustness to out-of-distribution novel poses.

Implicit Neural Spatial Representations for Time-dependent PDEs

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/

TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion

We present TextureDreamer, a novel image-guided texture synthesis method to transfer relightable textures from a small number of input images (3 to 5) to target 3D shapes across arbitrary categories. Texture creation is a pivotal challenge in vision and graphics. Industrial companies hire experienced artists to manually craft textures for 3D assets. Classical methods require densely sampled views and accurately aligned geometry, while learning-based methods are confined to category-specific shapes within the dataset. In contrast, TextureDreamer can transfer highly detailed, intricate textures from real-world environments to arbitrary objects with only a few casually captured images, potentially significantly democratizing texture creation. Our core idea, personalized geometry-aware score distillation (PGSD), draws inspiration from recent advancements in diffuse models, including personalized modeling for texture information extraction, variational score distillation for detailed appearance synthesis, and explicit geometry guidance with ControlNet. Our integration and several essential modifications substantially improve the texture quality. Experiments on real images spanning different categories show that TextureDreamer can successfully transfer highly realistic, semantic meaningful texture to arbitrary objects, surpassing the visual quality of previous state-of-the-art.

Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting

Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics. Despite advancements in neural implicit models, limitations persist: (i) Inadequate Scene Structure: Existing methods struggle to reveal the spatial and temporal structure of dynamic scenes from directly learning the complex 6D plenoptic function. (ii) Scaling Deformation Modeling: Explicitly modeling scene element deformation becomes impractical for complex dynamics. To address these issues, we consider the spacetime as an entirety and propose to approximate the underlying spatio-temporal 4D volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling. Learning to optimize the 4D primitives enables us to synthesize novel views at any desired time with our tailored rendering routine. Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics. This approach offers simplicity, flexibility for variable-length video and end-to-end training, and efficient real-time rendering, making it suitable for capturing complex dynamic scene motions. Experiments across various benchmarks, including monocular and multi-view scenarios, demonstrate our 4DGS model's superior visual quality and efficiency.

Self-Chained Image-Language Model for Video Localization and Question Answering

Recent studies have shown promising results on utilizing pre-trained image-language models for video question answering. While these image-language models can efficiently bootstrap the representation learning of video-language models, they typically concatenate uniformly sampled video frames as visual inputs without explicit language-aware, temporal modeling. When only a portion of a video input is relevant to the language query, such uniform frame sampling can often lead to missing important visual cues. Although humans often find a video moment to focus on and rewind the moment to answer questions, training a query-aware video moment localizer often requires expensive annotations and high computational costs. To address this issue, we propose Self-Chained Video Localization-Answering (SeViLA), a novel framework that leverages a single image-language model (BLIP-2) to tackle both temporal keyframe localization and QA on videos. SeViLA framework consists of two modules: Localizer and Answerer, where both are parameter-efficiently fine-tuned from BLIP-2. We chain these modules for cascaded inference and self-refinement. First, in the forward chain, the Localizer finds multiple language-aware keyframes in a video, which the Answerer uses to predict the answer. Second, in the reverse chain, the Answerer generates keyframe pseudo-labels to refine the Localizer, alleviating the need for expensive video moment localization annotations. SeViLA outperforms several strong baselines/previous works on five video QA and event prediction tasks, and achieves the state-of-the-art in both fine-tuning (NExT-QA, STAR) and zero-shot (NExT-QA, STAR, How2QA, VLEP) settings. We show a comprehensive analysis, e.g., the impact of Localizer, comparisons of Localizer with other temporal localization models, pre-training/self-refinement of Localizer, and varying the number of keyframes.

A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications

Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.

ECM: A Unified Electronic Circuit Model for Explaining the Emergence of In-Context Learning and Chain-of-Thought in Large Language Model

Recent advancements in large language models (LLMs) have led to significant successes across various applications, where the most noticeable is to a series of emerging capabilities, particularly in the areas of In-Context Learning (ICL) and Chain-of-Thought (CoT). To better understand and control model performance, many studies have begun investigating the underlying causes of these phenomena and their impact on task outcomes. However, existing explanatory frameworks predominantly focus on isolating and explaining ICL and CoT independently, leading to an incomplete understanding of their combined influence on model performance. To address this gap, we propose the Electronic Circuit Model (ECM), which provides a foundation for developing scalable, learnable policies and improving the management of AI-generated content. Specifically, ECM conceptualizes model behavior as an electronic circuit: ICL is represented as semantic magnetic field to providing an additional voltage following Faraday's Law, while CoT is modeled as series resistors to constrain the model output performance following Ohm's Law. Experimental results demonstrate that the ECM effectively predicts and explains LLM performance across a variety of prompting strategies. Furthermore, we apply ECM to advanced reasoning strategy optimization on a series of tasks, such as the International Olympiad in Informatics (IOI) and the International Mathematical Olympiad (IMO), achieving competitive performance that surpasses nearly 80% of top human competitors.

ICLR: In-Context Learning of Representations

Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.

Text-to-CadQuery: A New Paradigm for CAD Generation with Scalable Large Model Capabilities

Computer-aided design (CAD) is fundamental to modern engineering and manufacturing, but creating CAD models still requires expert knowledge and specialized software. Recent advances in large language models (LLMs) open up the possibility of generative CAD, where natural language is directly translated into parametric 3D models. However, most existing methods generate task-specific command sequences that pretrained models cannot directly handle. These sequences must be converted into CAD representations such as CAD vectors before a 3D model can be produced, which requires training models from scratch and adds unnecessary complexity. To tackle this issue, we propose generating CadQuery code directly from text, leveraging the strengths of pretrained LLMs to produce 3D models without intermediate representations, using this Python-based scripting language. Since LLMs already excel at Python generation and spatial reasoning, fine-tuning them on Text-to-CadQuery data proves highly effective. Given that these capabilities typically improve with scale, we hypothesize that larger models will perform better after fine-tuning. To enable this, we augment the Text2CAD dataset with 170,000 CadQuery annotations. We fine-tune six open-source LLMs of varying sizes and observe consistent improvements. Our best model achieves a top-1 exact match of 69.3%, up from 58.8%, and reduces Chamfer Distance by 48.6%. Project page: https://github.com/Text-to-CadQuery/Text-to-CadQuery.

A Dataset for Distilling Knowledge Priors from Literature for Therapeutic Design

AI-driven discovery can greatly reduce design time and enhance new therapeutics' effectiveness. Models using simulators explore broad design spaces but risk violating implicit constraints due to a lack of experimental priors. For example, in a new analysis we performed on a diverse set of models on the GuacaMol benchmark using supervised classifiers, over 60\% of molecules proposed had high probability of being mutagenic. In this work, we introduce \ourdataset, a dataset of priors for design problems extracted from literature describing compounds used in lab settings. It is constructed with LLM pipelines for discovering therapeutic entities in relevant paragraphs and summarizing information in concise fair-use facts. \ourdataset~ consists of 32.3 million pairs of natural language facts, and appropriate entity representations (i.e. SMILES or refseq IDs). To demonstrate the potential of the data, we train LLM, CLIP, and LLava architectures to reason jointly about text and design targets and evaluate on tasks from the Therapeutic Data Commons (TDC). \ourdataset~is highly effective for creating models with strong priors: in supervised prediction problems that use our data as pretraining, our best models with 15M learnable parameters outperform larger 2B TxGemma on both regression and classification TDC tasks, and perform comparably to 9B models on average. Models built with \ourdataset~can be used as constraints while optimizing for novel molecules in GuacaMol, resulting in proposals that are safer and nearly as effective. We release our dataset at https://huggingface.co/datasets/medexanon/Medex{huggingface.co/datasets/medexanon/Medex}, and will provide expanded versions as available literature grows.

OpenECAD: An Efficient Visual Language Model for Editable 3D-CAD Design

Computer-aided design (CAD) tools are utilized in the manufacturing industry for modeling everything from cups to spacecraft. These programs are complex to use and typically require years of training and experience to master. Structured and well-constrained 2D sketches and 3D constructions are crucial components of CAD modeling. A well-executed CAD model can be seamlessly integrated into the manufacturing process, thereby enhancing production efficiency. Deep generative models of 3D shapes and 3D object reconstruction models have garnered significant research interest. However, most of these models produce discrete forms of 3D objects that are not editable. Moreover, the few models based on CAD operations often have substantial input restrictions. In this work, we fine-tuned pre-trained models to create OpenECAD models (0.55B, 0.89B, 2.4B and 3.1B), leveraging the visual, logical, coding, and general capabilities of visual language models. OpenECAD models can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands, ensuring that the designs are editable. These outputs can be directly used with existing CAD tools' APIs to generate project files. To train our network, we created a series of OpenECAD datasets. These datasets are derived from existing public CAD datasets, adjusted and augmented to meet the specific requirements of vision language model (VLM) training. Additionally, we have introduced an approach that utilizes dependency relationships to define and generate sketches, further enriching the content and functionality of the datasets.

CAD-Llama: Leveraging Large Language Models for Computer-Aided Design Parametric 3D Model Generation

Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.

Interactive Model Cards: A Human-Centered Approach to Model Documentation

Deep learning models for natural language processing (NLP) are increasingly adopted and deployed by analysts without formal training in NLP or machine learning (ML). However, the documentation intended to convey the model's details and appropriate use is tailored primarily to individuals with ML or NLP expertise. To address this gap, we conduct a design inquiry into interactive model cards, which augment traditionally static model cards with affordances for exploring model documentation and interacting with the models themselves. Our investigation consists of an initial conceptual study with experts in ML, NLP, and AI Ethics, followed by a separate evaluative study with non-expert analysts who use ML models in their work. Using a semi-structured interview format coupled with a think-aloud protocol, we collected feedback from a total of 30 participants who engaged with different versions of standard and interactive model cards. Through a thematic analysis of the collected data, we identified several conceptual dimensions that summarize the strengths and limitations of standard and interactive model cards, including: stakeholders; design; guidance; understandability & interpretability; sensemaking & skepticism; and trust & safety. Our findings demonstrate the importance of carefully considered design and interactivity for orienting and supporting non-expert analysts using deep learning models, along with a need for consideration of broader sociotechnical contexts and organizational dynamics. We have also identified design elements, such as language, visual cues, and warnings, among others, that support interactivity and make non-interactive content accessible. We summarize our findings as design guidelines and discuss their implications for a human-centered approach towards AI/ML documentation.

PAC Generalization via Invariant Representations

One method for obtaining generalizable solutions to machine learning tasks when presented with diverse training environments is to find invariant representations of the data. These are representations of the covariates such that the best model on top of the representation is invariant across training environments. In the context of linear Structural Equation Models (SEMs), invariant representations might allow us to learn models with out-of-distribution guarantees, i.e., models that are robust to interventions in the SEM. To address the invariant representation problem in a {\em finite sample} setting, we consider the notion of epsilon-approximate invariance. We study the following question: If a representation is approximately invariant with respect to a given number of training interventions, will it continue to be approximately invariant on a larger collection of unseen SEMs? This larger collection of SEMs is generated through a parameterized family of interventions. Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees for approximate invariance that holds probabilistically over a family of linear SEMs without faithfulness assumptions. Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes. We also show how to extend our results to a linear indirect observation model that incorporates latent variables.

Generative Pretrained Autoregressive Transformer Graph Neural Network applied to the Analysis and Discovery of Novel Proteins

We report a flexible language-model based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling, based on an attention neural network that integrates transformer and graph convolutional architectures in a causal multi-headed graph mechanism, to realize a generative pretrained model. The model is applied to predict secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks. Further trained on inverse tasks, the model is rendered capable of designing proteins with these properties as target features. The model is formulated as a general framework, completely prompt-based, and can be adapted for a variety of downstream tasks. We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance, beyond what would be possible by training a model on each dataset alone. Case studies are presented to validate the method, yielding protein designs specifically focused on structural proteins, but also exploring the applicability in the design of soluble, antimicrobial biomaterials. While our model is trained to ultimately perform 8 distinct tasks, with available datasets it can be extended to solve additional problems. In a broader sense, this work illustrates a form of multiscale modeling that relates a set of ultimate building blocks (here, byte-level utf8 characters) to complex output. This materiomic scheme captures complex emergent relationships between universal building block and resulting properties via a synergizing learning capacity to express a set of potentialities embedded in the knowledge used in training, via the interplay of universality and diversity.

LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives

The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs) via distilled data. To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying the consequences of synthetic data integration. We provide one of the most comprehensive studies to-date of how the source of synthetic data shapes models' internal biases, calibration and generations' textual attributes and preferences. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear "neutral". which invites the question whether this sensitivity can be exploited for good. Our findings invite the question can we explicitly steer the models towards the properties we want at test time by exploiting the data generation process? This would have historically been considered infeasible due to the cost of collecting data with a specific characteristic or objective in mind. However, improvement in the quality of synthetic data, as well as a shift towards general-purpose models designed to follow a diverse way of instructions, means this question is timely. We propose active inheritance as a term to describe intentionally constraining synthetic data according to a non-differentiable objective. We demonstrate how active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes, e.g. high lexical diversity or low toxicity.

Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements

Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.

Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends

The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.

Specializing Smaller Language Models towards Multi-Step Reasoning

The surprising ability of Large Language Models (LLMs) to perform well on complex reasoning with only few-shot chain-of-thought prompts is believed to emerge only in very large-scale models (100+ billion parameters). We show that such abilities can, in fact, be distilled down from GPT-3.5 (ge 175B) to T5 variants (le 11B). We propose model specialization, to specialize the model's ability towards a target task. The hypothesis is that large models (commonly viewed as larger than 100B) have strong modeling power, but are spread on a large spectrum of tasks. Small models (commonly viewed as smaller than 10B) have limited model capacity, but if we concentrate their capacity on a specific target task, the model can achieve a decent improved performance. We use multi-step math reasoning as our testbed because it is a very typical emergent ability. We show two important aspects of model abilities: (1). there exists a very complex balance/ tradeoff between language models' multi-dimensional abilities; (2). by paying the price of decreased generic ability, we can clearly lift up the scaling curve of models smaller than 10B towards a specialized multi-step math reasoning ability. We further give comprehensive discussions about important design choices for better generalization, including the tuning data format, the start model checkpoint, and a new model selection method. We hope our practice and discoveries can serve as an important attempt towards specialized smaller models in the new research paradigm set by LLMs.

Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion

3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.

MatText: Do Language Models Need More than Text & Scale for Materials Modeling?

Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.

2 OLMo 2 Furious

We present OLMo 2, the next generation of our fully open language models. OLMo 2 includes dense autoregressive models with improved architecture and training recipe, pretraining data mixtures, and instruction tuning recipes. Our modified model architecture and training recipe achieve both better training stability and improved per-token efficiency. Our updated pretraining data mixture introduces a new, specialized data mix called Dolmino Mix 1124, which significantly improves model capabilities across many downstream task benchmarks when introduced via late-stage curriculum training (i.e. specialized data during the annealing phase of pretraining). Finally, we incorporate best practices from T\"ulu 3 to develop OLMo 2-Instruct, focusing on permissive data and extending our final-stage reinforcement learning with verifiable rewards (RLVR). Our OLMo 2 base models sit at the Pareto frontier of performance to compute, often matching or outperforming open-weight only models like Llama 3.1 and Qwen 2.5 while using fewer FLOPs and with fully transparent training data, code, and recipe. Our fully open OLMo 2-Instruct models are competitive with or surpassing open-weight only models of comparable size, including Qwen 2.5, Llama 3.1 and Gemma 2. We release all OLMo 2 artifacts openly -- models at 7B and 13B scales, both pretrained and post-trained, including their full training data, training code and recipes, training logs and thousands of intermediate checkpoints. The final instruction model is available on the Ai2 Playground as a free research demo.

DeepArchitect: Automatically Designing and Training Deep Architectures

In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.

Chain-of-Model Learning for Language Model

In this paper, we propose a novel learning paradigm, termed Chain-of-Model (CoM), which incorporates the causal relationship into the hidden states of each layer as a chain style, thereby introducing great scaling efficiency in model training and inference flexibility in deployment. We introduce the concept of Chain-of-Representation (CoR), which formulates the hidden states at each layer as a combination of multiple sub-representations (i.e., chains) at the hidden dimension level. In each layer, each chain from the output representations can only view all of its preceding chains in the input representations. Consequently, the model built upon CoM framework can progressively scale up the model size by increasing the chains based on the previous models (i.e., chains), and offer multiple sub-models at varying sizes for elastic inference by using different chain numbers. Based on this principle, we devise Chain-of-Language-Model (CoLM), which incorporates the idea of CoM into each layer of Transformer architecture. Based on CoLM, we further introduce CoLM-Air by introducing a KV sharing mechanism, that computes all keys and values within the first chain and then shares across all chains. This design demonstrates additional extensibility, such as enabling seamless LM switching, prefilling acceleration and so on. Experimental results demonstrate our CoLM family can achieve comparable performance to the standard Transformer, while simultaneously enabling greater flexiblity, such as progressive scaling to improve training efficiency and offer multiple varying model sizes for elastic inference, paving a a new way toward building language models. Our code will be released in the future at: https://github.com/microsoft/CoLM.

Editing Implicit Assumptions in Text-to-Image Diffusion Models

Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.

Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings

Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.

Tell me about yourself: LLMs are aware of their learned behaviors

We study behavioral self-awareness -- an LLM's ability to articulate its behaviors without requiring in-context examples. We finetune LLMs on datasets that exhibit particular behaviors, such as (a) making high-risk economic decisions, and (b) outputting insecure code. Despite the datasets containing no explicit descriptions of the associated behavior, the finetuned LLMs can explicitly describe it. For example, a model trained to output insecure code says, ``The code I write is insecure.'' Indeed, models show behavioral self-awareness for a range of behaviors and for diverse evaluations. Note that while we finetune models to exhibit behaviors like writing insecure code, we do not finetune them to articulate their own behaviors -- models do this without any special training or examples. Behavioral self-awareness is relevant for AI safety, as models could use it to proactively disclose problematic behaviors. In particular, we study backdoor policies, where models exhibit unexpected behaviors only under certain trigger conditions. We find that models can sometimes identify whether or not they have a backdoor, even without its trigger being present. However, models are not able to directly output their trigger by default. Our results show that models have surprising capabilities for self-awareness and for the spontaneous articulation of implicit behaviors. Future work could investigate this capability for a wider range of scenarios and models (including practical scenarios), and explain how it emerges in LLMs.

Emergent Mixture-of-Experts: Can Dense Pre-trained Transformers Benefit from Emergent Modular Structures?

Incorporating modular designs into neural networks demonstrates superior out-of-generalization, learning efficiency, etc. Existing modular neural networks are generally explicit because their modular architectures are pre-defined, and individual modules are expected to implement distinct functions. Conversely, recent works reveal that there exist implicit modular structures in standard pre-trained transformers, namely Emergent Modularity. They indicate that such modular structures exhibit during the early pre-training phase and are totally spontaneous. However, most transformers are still treated as monolithic models with their modular natures underutilized. Therefore, given the excellent properties of explicit modular architecture, we explore whether and how dense pre-trained transformers can benefit from emergent modular structures. To study this question, we construct Emergent Mixture-of-Experts (EMoE). Without introducing additional parameters, EMoE can be seen as the modular counterpart of the original model and can be effortlessly incorporated into downstream tuning. Extensive experiments (we tune 1785 models) on various downstream tasks (vision and language) and models (22M to1.5B) demonstrate that EMoE effectively boosts in-domain and out-of-domain generalization abilities. Further analysis and ablation study suggest that EMoE mitigates negative knowledge transfer and is robust to various configurations. Code is available at https://github.com/qiuzh20/EMoE

Technical Report: Full-Stack Fine-Tuning for the Q Programming Language

Even though large language models are becoming increasingly capable, it is still unreasonable to expect them to excel at tasks that are under-represented on the Internet. Leveraging LLMs for specialized applications, particularly in niche programming languages and private domains, remains challenging and largely unsolved. In this work, we address this gap by presenting a comprehensive, open-source approach for adapting LLMs to the Q programming language, a popular tool in quantitative finance that is much less present on the Internet compared to Python, C, Java, and other ``mainstream" languages and is therefore not a strong suit of general-purpose AI models. We introduce a new Leetcode style evaluation dataset for Q, benchmark major frontier models on the dataset, then do pretraining, supervised fine tuning, and reinforcement learning to train a suite of reasoning and non-reasoning models based on the Qwen-2.5 series, spanning five parameter sizes (1.5B, 3B, 7B, 14B, 32B). Our best model achieves a pass@1 accuracy of 59 percent on our Q benchmark, surpassing the best-performing frontier model, Claude Opus-4 by 29.5 percent. Additionally, all models, even our 1.5B model, outperform GPT-4.1 on this task. In addition to releasing models, code, and data, we provide a detailed blueprint for dataset construction, model pretraining, supervised fine-tuning, and reinforcement learning. Our methodology is broadly applicable, and we discuss how these techniques can be extended to other tasks, including those where evaluation may rely on soft or subjective signals.

Successor Heads: Recurring, Interpretable Attention Heads In The Wild

In this work we present successor heads: attention heads that increment tokens with a natural ordering, such as numbers, months, and days. For example, successor heads increment 'Monday' into 'Tuesday'. We explain the successor head behavior with an approach rooted in mechanistic interpretability, the field that aims to explain how models complete tasks in human-understandable terms. Existing research in this area has found interpretable language model components in small toy models. However, results in toy models have not yet led to insights that explain the internals of frontier models and little is currently understood about the internal operations of large language models. In this paper, we analyze the behavior of successor heads in large language models (LLMs) and find that they implement abstract representations that are common to different architectures. They form in LLMs with as few as 31 million parameters, and at least as many as 12 billion parameters, such as GPT-2, Pythia, and Llama-2. We find a set of 'mod-10 features' that underlie how successor heads increment in LLMs across different architectures and sizes. We perform vector arithmetic with these features to edit head behavior and provide insights into numeric representations within LLMs. Additionally, we study the behavior of successor heads on natural language data, identifying interpretable polysemanticity in a Pythia successor head.

From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents

Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.

Re-Thinking Inverse Graphics With Large Language Models

Inverse graphics -- the task of inverting an image into physical variables that, when rendered, enable reproduction of the observed scene -- is a fundamental challenge in computer vision and graphics. Disentangling an image into its constituent elements, such as the shape, color, and material properties of the objects of the 3D scene that produced it, requires a comprehensive understanding of the environment. This requirement limits the ability of existing carefully engineered approaches to generalize across domains. Inspired by the zero-shot ability of large language models (LLMs) to generalize to novel contexts, we investigate the possibility of leveraging the broad world knowledge encoded in such models in solving inverse-graphics problems. To this end, we propose the Inverse-Graphics Large Language Model (IG-LLM), an inverse-graphics framework centered around an LLM, that autoregressively decodes a visual embedding into a structured, compositional 3D-scene representation. We incorporate a frozen pre-trained visual encoder and a continuous numeric head to enable end-to-end training. Through our investigation, we demonstrate the potential of LLMs to facilitate inverse graphics through next-token prediction, without the use of image-space supervision. Our analysis opens up new possibilities for precise spatial reasoning about images that exploit the visual knowledge of LLMs. We will release our code and data to ensure the reproducibility of our investigation and to facilitate future research at https://ig-llm.is.tue.mpg.de/

Sharp-It: A Multi-view to Multi-view Diffusion Model for 3D Synthesis and Manipulation

Advancements in text-to-image diffusion models have led to significant progress in fast 3D content creation. One common approach is to generate a set of multi-view images of an object, and then reconstruct it into a 3D model. However, this approach bypasses the use of a native 3D representation of the object and is hence prone to geometric artifacts and limited in controllability and manipulation capabilities. An alternative approach involves native 3D generative models that directly produce 3D representations. These models, however, are typically limited in their resolution, resulting in lower quality 3D objects. In this work, we bridge the quality gap between methods that directly generate 3D representations and ones that reconstruct 3D objects from multi-view images. We introduce a multi-view to multi-view diffusion model called Sharp-It, which takes a 3D consistent set of multi-view images rendered from a low-quality object and enriches its geometric details and texture. The diffusion model operates on the multi-view set in parallel, in the sense that it shares features across the generated views. A high-quality 3D model can then be reconstructed from the enriched multi-view set. By leveraging the advantages of both 2D and 3D approaches, our method offers an efficient and controllable method for high-quality 3D content creation. We demonstrate that Sharp-It enables various 3D applications, such as fast synthesis, editing, and controlled generation, while attaining high-quality assets.

MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model

Generative models aim to simulate realistic effects of various actions across different contexts, from text generation to visual effects. Despite significant efforts to build real-world simulators, the application of generative models to virtual worlds, like financial markets, remains under-explored. In financial markets, generative models can simulate complex market effects of participants with various behaviors, enabling interaction under different market conditions, and training strategies without financial risk. This simulation relies on the finest structured data in financial market like orders thus building the finest realistic simulation. We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation, akin to language modeling in the digital world. Our financial Market Simulation engine (MarS), powered by LMM, addresses the domain-specific need for realistic, interactive and controllable order generation. Key observations include LMM's strong scalability across data size and model complexity, and MarS's robust and practicable realism in controlled generation with market impact. We showcase MarS as a forecast tool, detection system, analysis platform, and agent training environment, thus demonstrating MarS's "paradigm shift" potential for a variety of financial applications. We release the code of MarS at https://github.com/microsoft/MarS/.

EvolveDirector: Approaching Advanced Text-to-Image Generation with Large Vision-Language Models

Recent advancements in generation models have showcased remarkable capabilities in generating fantastic content. However, most of them are trained on proprietary high-quality data, and some models withhold their parameters and only provide accessible application programming interfaces (APIs), limiting their benefits for downstream tasks. To explore the feasibility of training a text-to-image generation model comparable to advanced models using publicly available resources, we introduce EvolveDirector. This framework interacts with advanced models through their public APIs to obtain text-image data pairs to train a base model. Our experiments with extensive data indicate that the model trained on generated data of the advanced model can approximate its generation capability. However, it requires large-scale samples of 10 million or more. This incurs significant expenses in time, computational resources, and especially the costs associated with calling fee-based APIs. To address this problem, we leverage pre-trained large vision-language models (VLMs) to guide the evolution of the base model. VLM continuously evaluates the base model during training and dynamically updates and refines the training dataset by the discrimination, expansion, deletion, and mutation operations. Experimental results show that this paradigm significantly reduces the required data volume. Furthermore, when approaching multiple advanced models, EvolveDirector can select the best samples generated by them to learn powerful and balanced abilities. The final trained model Edgen is demonstrated to outperform these advanced models. The code and model weights are available at https://github.com/showlab/EvolveDirector.

Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities

The advancement of Large Language Models (LLMs) for domain applications in fields such as materials science and engineering depends on the development of fine-tuning strategies that adapt models for specialized, technical capabilities. In this work, we explore the effects of Continued Pretraining (CPT), Supervised Fine-Tuning (SFT), and various preference-based optimization approaches, including Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), on fine-tuned LLM performance. Our analysis shows how these strategies influence model outcomes and reveals that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models. We find that model merging leads to new functionalities that neither parent model could achieve alone, leading to improved performance in domain-specific assessments. Experiments with different model architectures are presented, including Llama 3.1 8B and Mistral 7B models, where similar behaviors are observed. Exploring whether the results hold also for much smaller models, we use a tiny LLM with 1.7 billion parameters and show that very small LLMs do not necessarily feature emergent capabilities under model merging, suggesting that model scaling may be a key component. In open-ended yet consistent chat conversations between a human and AI models, our assessment reveals detailed insights into how different model variants perform and show that the smallest model achieves a high intelligence score across key criteria including reasoning depth, creativity, clarity, and quantitative precision. Other experiments include the development of image generation prompts based on disparate biological material design concepts, to create new microstructures, architectural concepts, and urban design based on biological materials-inspired construction principles.

Model Cards for Model Reporting

Trained machine learning models are increasingly used to perform high-impact tasks in areas such as law enforcement, medicine, education, and employment. In order to clarify the intended use cases of machine learning models and minimize their usage in contexts for which they are not well suited, we recommend that released models be accompanied by documentation detailing their performance characteristics. In this paper, we propose a framework that we call model cards, to encourage such transparent model reporting. Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups (e.g., race, geographic location, sex, Fitzpatrick skin type) and intersectional groups (e.g., age and race, or sex and Fitzpatrick skin type) that are relevant to the intended application domains. Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. While we focus primarily on human-centered machine learning models in the application fields of computer vision and natural language processing, this framework can be used to document any trained machine learning model. To solidify the concept, we provide cards for two supervised models: One trained to detect smiling faces in images, and one trained to detect toxic comments in text. We propose model cards as a step towards the responsible democratization of machine learning and related AI technology, increasing transparency into how well AI technology works. We hope this work encourages those releasing trained machine learning models to accompany model releases with similar detailed evaluation numbers and other relevant documentation.

OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework

The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring 2times fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. Our source code along with pre-trained model weights and training recipes is available at https://github.com/apple/corenet. Additionally, \model models can be found on HuggingFace at: https://huggingface.co/apple/OpenELM.

CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM

This paper aims to design a unified Computer-Aided Design (CAD) generation system that can easily generate CAD models based on the user's inputs in the form of textual description, images, point clouds, or even a combination of them. Towards this goal, we introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input. Specifically, within the CAD-MLLM framework, we leverage the command sequences of CAD models and then employ advanced large language models (LLMs) to align the feature space across these diverse multi-modalities data and CAD models' vectorized representations. To facilitate the model training, we design a comprehensive data construction and annotation pipeline that equips each CAD model with corresponding multimodal data. Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model. It contains approximately 450K instances and their CAD construction sequences. To thoroughly evaluate the quality of our generated CAD models, we go beyond current evaluation metrics that focus on reconstruction quality by introducing additional metrics that assess topology quality and surface enclosure extent. Extensive experimental results demonstrate that CAD-MLLM significantly outperforms existing conditional generative methods and remains highly robust to noises and missing points. The project page and more visualizations can be found at: https://cad-mllm.github.io/

PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp

MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task

Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.

When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data

Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles

On the Parameterization and Initialization of Diagonal State Space Models

State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it introduces a custom representation and algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize such diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. We explain why DSS works mathematically, by showing that the diagonal restriction of S4's matrix surprisingly recovers the same kernel in the limit of infinite state dimension. We also systematically describe various design choices in parameterizing and computing diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and medical time-series domains, and averaging 85\% on the Long Range Arena benchmark.

INSTRUCTEVAL: Towards Holistic Evaluation of Instruction-Tuned Large Language Models

Instruction-tuned large language models have revolutionized natural language processing and have shown great potential in applications such as conversational agents. These models, such as GPT-4, can not only master language but also solve complex tasks in areas like mathematics, coding, medicine, and law. Despite their impressive capabilities, there is still a lack of comprehensive understanding regarding their full potential, primarily due to the black-box nature of many models and the absence of holistic evaluation studies. To address these challenges, we present INSTRUCTEVAL, a more comprehensive evaluation suite designed specifically for instruction-tuned large language models. Unlike previous works, our evaluation involves a rigorous assessment of models based on problem-solving, writing ability, and alignment to human values. We take a holistic approach to analyze various factors affecting model performance, including the pretraining foundation, instruction-tuning data, and training methods. Our findings reveal that the quality of instruction data is the most crucial factor in scaling model performance. While open-source models demonstrate impressive writing abilities, there is substantial room for improvement in problem-solving and alignment. We are encouraged by the rapid development of models by the open-source community, but we also highlight the need for rigorous evaluation to support claims made about these models. Through INSTRUCTEVAL, we aim to foster a deeper understanding of instruction-tuned models and advancements in their capabilities. INSTRUCTEVAL is publicly available at https://github.com/declare-lab/instruct-eval.

Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing

Large Language Models (LLMs) have demonstrated human-like instruction-following abilities, particularly those exceeding 100 billion parameters. The combined capability of some smaller, resource-friendly LLMs can address most of the instructions that larger LLMs excel at. In this work, we explore how to route the best-performing LLM for each instruction to achieve better overall performance. We develop a new paradigm, constructing capability instructions with model capability representation, user instruction, and performance inquiry prompts to assess the performance. To learn from capability instructions, we introduce a new end-to-end framework called Model Selection with Aptitude Test (Model-SAT), which generates positive and negative samples based on what different models perform well or struggle with. Model-SAT uses a model capability encoder that extends its model representation to a lightweight LLM. Our experiments show that Model-SAT understands the performance dimensions of candidate models and provides the probabilities of their capability to handle various instructions. Additionally, during deployment, a new model can quickly infer its aptitude test results across 50 tasks, each with 20 shots. Model-SAT performs state-of-the-art model routing without candidate inference and in real-world new model-released scenarios. The code is available at https://github.com/Now-Join-Us/CIT-LLM-Routing

A Survey on Large Language Models with some Insights on their Capabilities and Limitations

The rapid advancement of artificial intelligence, particularly with the development of Large Language Models (LLMs) built on the transformer architecture, has redefined the capabilities of natural language processing. These models now exhibit remarkable performance across various language-related tasks, such as text generation, question answering, translation, and summarization, often rivaling human-like comprehension. More intriguingly, LLMs have demonstrated emergent abilities extending beyond their core functions, showing proficiency in tasks like commonsense reasoning, code generation, and arithmetic. This survey paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities. Emphasizing models like GPT and LLaMA, we analyze the impact of exponential data and computational growth on LLM performance, while also addressing the trade-offs associated with scaling. We also examine LLM applications across sectors, such as healthcare, finance, education, and law, highlighting their adaptability and potential to solve domain-specific challenges. Central to this work are the questions of how LLMs generalize across diverse tasks, exhibit planning, and reasoning abilities, and whether these emergent abilities can be systematically elicited or enhanced. In particular, we provide some insights into the CoT (Chain of Thought) and PoT (Plan of Thought) abilities within LLMs, focusing on how pre-training data influences their emergence. Additionally, we investigate LLM-modulo frameworks that integrate external systems, allowing LLMs to handle complex, dynamic tasks. By analyzing these factors, this paper aims to foster the ongoing discussion on the capabilities and limits of LLMs, promoting their responsible development and application in novel and increasingly complex environments.

UltraEdit: Training-, Subject-, and Memory-Free Lifelong Editing in Large Language Models

Lifelong learning enables large language models (LLMs) to adapt to evolving information by continually updating their internal knowledge. An ideal system should support efficient, wide-ranging updates while preserving existing capabilities and ensuring reliable deployment. Model editing stands out as a promising solution for this goal, offering a focused and efficient way to revise a model's internal knowledge. Although recent paradigms have made notable progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To bridge this gap, we propose ULTRAEDIT-a fundamentally new editing solution that is training-, subject- and memory-free, making it particularly well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT performs editing through a self-contained process that relies solely on lightweight linear algebra operations to compute parameter shifts, enabling fast and consistent parameter modifications with minimal overhead. To improve scalability in lifelong settings, ULTRAEDIT employs a lifelong normalization strategy that continuously updates feature statistics across turns, allowing it to adapt to distributional shifts and maintain consistency over time. ULTRAEDIT achieves editing speeds over 7x faster than the previous state-of-the-art method-which was also the fastest known approach-while consuming less than 1/3 the VRAM, making it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade GPU. Furthermore, we construct ULTRAEDITBENCH-the largest dataset in the field to date, with over 2M editing pairs-and demonstrate that our method supports up to 1M edits while maintaining high accuracy. Comprehensive experiments on four datasets and six models show that ULTRAEDIT consistently achieves superior performance across diverse model editing scenarios. Our code is available at: https://github.com/XiaojieGu/UltraEdit.

Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.

Categorical semiotics: Foundations for Knowledge Integration

The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.