Notebooks-explorers

community
Activity Feed

AI & ML interests

Request to join this organization to beta-test notebooks on Hugging Face!

Recent Activity

notebooks-explorers's activity

merve 
posted an update 1 day ago
davanstrien 
posted an update 5 days ago
view post
Post
1524
Introducing FineWeb-C 🌐🎓, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
merve 
posted an update 8 days ago
view post
Post
2345
Aya by Cohere For AI can now see! 👀

C4AI community has built Maya 8B, a new open-source multilingual VLM built on SigLIP and Aya 8B 🌱 works on 8 languages! 🗣️

The authors extend Llava dataset using Aya's translation capabilities with 558k examples!
ry it here kkr5155/maya_demo

Dataset maya-multimodal/pretrain

Model maya-multimodal/maya 👏
kudos @nahidalam and team
  • 1 reply
·
merve 
posted an update 8 days ago
view post
Post
2911
Apollo is a new family of open-source video language models by Meta, where 3B model outperforms most 7B models and 7B outperforms most 30B models 🧶

✨ the models come in 1.5B https://huggingface.co/Apollo-LMMs/Apollo-1_5B-t32, 3B https://huggingface.co/Apollo-LMMs/Apollo-3B-t32 and 7B https://huggingface.co/Apollo-LMMs/Apollo-7B-t32 with A2.0 license, based on Qwen1.5 & Qwen2
✨ the authors also release a benchmark dataset https://huggingface.co/spaces/Apollo-LMMs/ApolloBench

The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work ⏯️

Try the demo for best setup here https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B
they evaluate sampling strategies, scaling laws for models and datasets, video representation and more!
> The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled 📈 scaling dataset has diminishing returns for smaller models
> They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal
> They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2
they find google/siglip-so400m-patch14-384 to be most powerful 🔥
> they also compare freezing different parts of models, training all stages with some frozen parts give the best yield

They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models 🔥
  • 3 replies
·
merve 
posted an update 14 days ago
view post
Post
1670
A complete RAG pipeline includes a reranker, which ranks the documents to find the best document 📓
Same goes for multimodal RAG, multimodal rerankers which we can integrate to multimodal RAG pipelines!
Learn how to build a complete multimodal RAG pipeline with vidore/colqwen2-v1.0 as retriever, lightonai/MonoQwen2-VL-v0.1 as reranker, Qwen/Qwen2-VL-7B-Instruct as VLM in this notebook that runs on a GPU as small as L4 🔥 https://huggingface.co/learn/cookbook/multimodal_rag_using_document_retrieval_and_reranker_and_vlms
julien-c 
posted an update 15 days ago
view post
Post
7610
After some heated discussion 🔥, we clarify our intent re. storage limits on the Hub

TL;DR:
- public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible
- private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)

docs: https://huggingface.co/docs/hub/storage-limits

We optimize our infrastructure continuously to scale our storage for the coming years of growth in Machine learning, to the benefit of the community 🔥

cc: @reach-vb @pierric @victor and the HF team
·
merve 
posted an update 18 days ago
view post
Post
5507
This week in open-source AI was insane 🤠 A small recap🕺🏻 merve/dec-6-releases-67545caebe9fc4776faac0a3

Multimodal 🖼️
> Google shipped a PaliGemma 2, new iteration of PaliGemma with more sizes: 3B, 10B and 28B, with pre-trained and captioning variants 👏
> OpenGVLab released InternVL2, seven new vision LMs in different sizes, with sota checkpoint with MIT license ✨
> Qwen team at Alibaba released the base models of Qwen2VL models with 2B, 7B and 72B ckpts

LLMs 💬
> Meta released a new iteration of Llama 70B, Llama3.2-70B trained further
> EuroLLM-9B-Instruct is a new multilingual LLM for European languages with Apache 2.0 license 🔥
> Dataset: CohereForAI released GlobalMMLU, multilingual version of MMLU with 42 languages with Apache 2.0 license
> Dataset: QwQ-LongCoT-130K is a new dataset to train reasoning models
> Dataset: FineWeb2 just landed with multilinguality update! 🔥 nearly 8TB pretraining data in many languages!

Image/Video Generation 🖼️
> Tencent released HunyuanVideo, a new photorealistic video generation model
> OminiControl is a new editing/control framework for image generation models like Flux

Audio 🔊
> Indic-Parler-TTS is a new text2speech model made by community
merve 
posted an update 18 days ago
reach-vb 
posted an update 19 days ago
view post
Post
3206
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: https://huggingface.co/jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co/vikhyatk/

What a time to be alive! 🔥
ariG23498 
posted an update 20 days ago
merve 
posted an update 24 days ago
view post
Post
2629
small but mighty 🔥
you can fine-tune SmolVLM on an L4 with batch size of 4 and it will only take 16.4 GB VRAM 🫰🏻 also with gradient accumulation simulated batch size is 16 ✨
I made a notebook that includes all the goodies: QLoRA, gradient accumulation, gradient checkpointing with explanations on how they work 💝 https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
merve 
posted an update 24 days ago
view post
Post
2865
Last week we were blessed with open-source models! A recap 💝
merve/nov-29-releases-674ccc255a57baf97b1e2d31

🖼️ Multimodal
> At Hugging Face we released SmolVLM, a performant and efficient smol vision language model 💗
> Show Lab released ShowUI-2B: new vision-language-action model to build GUI/web automation agents 🤖
> Rhymes AI has released the base model of Aria: Aria-Base-64K and Aria-Base-8K with their respective context length
> ViDoRe team released ColSmolVLM: A new ColPali-like retrieval model based on SmolVLM
> Dataset: Llava-CoT-o1-Instruct: new dataset labelled using Llava-CoT multimodal reasoning model📖
> Dataset: LLaVA-CoT-100k dataset used to train Llava-CoT released by creators of Llava-CoT 📕

💬 LLMs
> Qwen team released QwQ-32B-Preview, state-of-the-art open-source reasoning model, broke the internet 🔥
> AliBaba has released Marco-o1, a new open-source reasoning model 💥
> NVIDIA released Hymba 1.5B Base and Instruct, the new state-of-the-art SLMs with hybrid architecture (Mamba + transformer)

⏯️ Image/Video Generation
> Qwen2VL-Flux: new image generation model based on Qwen2VL image encoder, T5 and Flux for generation
> Lightricks released LTX-Video, a new DiT-based video generation model that can generate 24 FPS videos at 768x512 res ⏯️
> Dataset: Image Preferences is a new image generation preference dataset made with DIBT community effort of Argilla 🏷️

Audio
> OuteAI released OuteTTS-0.2-500M new multilingual text-to-speech model based on Qwen-2.5-0.5B trained on 5B audio prompt tokens
julien-c 
posted an update 26 days ago
view post
Post
2193
wow 😮

INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

PrimeIntellect/INTELLECT-1-Instruct
davanstrien 
posted an update 27 days ago
view post
Post
488
Increasingly, LLMs are becoming very useful for helping scale annotation tasks, i.e. labelling and filtering. When combined with the structured generation, this can be a very scalable way of doing some pre-annotation without requiring a large team of human annotators.

However, there are quite a few cases where it still doesn't work well. This is a nice paper looking at the limitations of LLM as an annotator for Low Resource Languages: On Limitations of LLM as Annotator for Low Resource Languages (2411.17637).

Humans will still have an important role in the loop to help improve models for all languages (and domains).
merve 
posted an update 29 days ago
view post
Post
2162
The authors of ColPali trained a retrieval model based on SmolVLM 🤠 vidore/colsmolvlm-alpha
TLDR;

- ColSmolVLM performs better than ColPali and DSE-Qwen2 on all English tasks

- ColSmolVLM is more memory efficient than ColQwen2 💗
merve 
posted an update 29 days ago
view post
Post
3870
Small yet mighty! 💫

We are releasing SmolVLM: a new 2B small vision language made for on-device use, fine-tunable on consumer GPU, immensely memory efficient 🤠

We release three checkpoints under Apache 2.0: SmolVLM-Instruct, SmolVLM-Synthetic and SmolVLM-Base HuggingFaceTB/smolvlm-6740bd584b2dcbf51ecb1f39

Learn more from our blog here: huggingface.co/blog/smolvlm
This release comes with a demo, fine-tuning code, MLX integration and TRL integration for DPO 💝
Try the demo: HuggingFaceTB/SmolVLM
Fine-tuning Recipe: https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
Also TRL integration for DPO 💗