Post
1538
None defined yet.
from loadimg import load_img
from huggingface_hub import InferenceClient
# or load a local image
my_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type="base64" )
client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Describe this image in one sentence."
},
{
"type": "image_url",
"image_url": {
"url": my_b64_img # base64 allows using images without uploading them to the web
}
}
]
}
]
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)
for chunk in stream:
print(chunk.choices[0].delta.content, end="")
pip install -qU "huggingface_hub>=0.22"
from huggingface_hub import PyTorchModelHubMixin
from torch import nn
class MyModel(nn.Module,PyTorchModelHubMixin):
def __init__(self, a, b):
super().__init__()
self.layer = nn.Linear(a,b)
def forward(self,inputs):
return self.layer(inputs)
first_model = MyModel(3,1)
first_model.push_to_hub("not-lain/test")
pretrained_model = MyModel.from_pretrained("not-lain/test")