AI & ML interests

vision , multimedia , gradio, accessibility & cool demos

TeamTonic's activity

hesamation 
posted an update about 2 hours ago
ZennyKenny 
posted an update 6 days ago
hesamation 
posted an update 6 days ago
view post
Post
7069
Google published a 69-page whitepaper on Prompt Engineering and its best practices, a must-read if you are using LLMs in production:
> zero-shot, one-shot, few-shot
> system prompting
> chain-of-thought (CoT)
> ReAct

LINK: https://www.kaggle.com/whitepaper-prompt-engineering
> code prompting
> best practices
prithivMLmods 
posted an update 9 days ago
view post
Post
3198
Loaded some domain-specific downstream image classification content moderation models, which is essentially the practice of monitoring and filtering user-generated content on platforms, based on SigLIP-2 Base Patch16 with newly initialized trainable parameters. 🥠

+ Age-Classification-SigLIP2 : prithivMLmods/Age-Classification-SigLIP2
[ Age range classification from 0 to 65+ years ]
+ Facial-Emotion-Detection-SigLIP2 : prithivMLmods/Facial-Emotion-Detection-SigLIP2
[ Designed to classify different facial emotions ]
+ Hand-Gesture-2-Robot : prithivMLmods/Hand-Gesture-2-Robot
[ Human Hand Gesture Classification for Robot Control ]
+ Mature-Content-Detection : prithivMLmods/Mature-Content-Detection
[ Mature [adult] or neutral content categories ]
+ Vit-Mature-Content-Detection : prithivMLmods/Vit-Mature-Content-Detection
[ Mature [adult] or neutral content categories ft. ViT]
+ Human-Action-Recognition : prithivMLmods/Human-Action-Recognition
[ Human actions including clapping, sitting, running, and more ]
+ Mirage-Photo-Classifier : prithivMLmods/Mirage-Photo-Classifier
[ Whether an image is real or AI-generated (fake) ]
+ Food-101-93M : prithivMLmods/Food-101-93M
[ Classify food images into one of 101 popular dishes ]
+ Hand-Gesture-19 : prithivMLmods/Hand-Gesture-19
[ Classify hand gesture images into different categories ]
+ Trash-Net : prithivMLmods/Trash-Net
[ Classification of trash into six distinct categories ]
+ Gender-Classifier-Mini : prithivMLmods/Gender-Classifier-Mini
[ Classify images based on gender [Male / Female] ]

🎡Collections :

+ SigLIP2 Content Filters : prithivMLmods/siglip2-content-filters-models-67f001055ec2bed56ca41f6d
AtAndDev 
posted an update 9 days ago
view post
Post
2873
Llama 4 is out...
·
hesamation 
posted an update 10 days ago
view post
Post
2808
The best researchers from Yale, Stanford, Google DeepMind, and Microsoft laid out all we know about Agents in a 264-page paper [book],

Here are some of their key findings:

They build a mapping of different agent components, such as perception, memory, and world modelling, to different regions of the human brain and compare them:

- brain is much more energy-efficient
- no genuine experience in agents
- brain learns continuously, agent is static

An agent is broken down to:
- Perception: the agent's input mechanism. can be improved with multi-modality, feedback mechanisms (e.g., human corrections), etc.
- Cognition: learning, reasoning, planning, memory. LLMs are key in this part.
- Action: agent's output and tool use.

Agentic memory is represented as:
- Sensory memory or short-term holding of inputs which is not emphasized much in agents.
- Short-term memory which is the LLM context window
- Long-term memory which is the external storage such as RAG or knowledge graphs.

The memory in agents can be improved and researched in terms of:
- increasing the amount of stored information
- how to retrieve the most relevant info
- combining context-window memory with external memory
- deciding what to forget or update in memory

The agent must simulate or predict the future states of the environment for planning and decision-making.

ai world models are much simpler than the humans' with their causal reasoning (cause-and-effect) or physical intuition.

LLM world models are mostly implicit and embedded.

EMOTIONS are a deep aspect of humans, helping them with social interactions, decision-making, or learning.

Agents must understand emotions to better interact with us.

But rather than encoding the feeling of emotions, they have a surface-level modelling of emotions.

Perception is the process by which an agent receives and interprets raw data from its surroundings.

READ PAPER: Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems (2504.01990)
prithivMLmods 
posted an update 10 days ago
view post
Post
2098
ChatGPT-4o’s image generation goes wild for a week—featuring everything from Studio Ghibli-style art and image colorization to style intermixing. Here are some examples showcasing the generation of highly detailed images from freestyle design templates. Want to know more? Check out the blog 🚀

🔗Blog : https://huggingface.co/blog/prithivMLmods/chatgpt-4o-image-gen
hesamation 
posted an update 14 days ago
view post
Post
2681
What, How, Where, and How Well? This paper reviews test-time scaling methods and all you need to know about them:
> parallel, sequential, hybrid, internal scaling
> how to scale (SFT, RL, search, verification)
> metrics and evals of test-time scaling

🔗paper: What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models (2503.24235)

If you want to learn what inference-time compute scaling is @rasbt has a great blog post on that:
https://magazine.sebastianraschka.com/p/state-of-llm-reasoning-and-inference-scaling
ZennyKenny 
posted an update 15 days ago
view post
Post
2119
A few new Russian-language synthetic datasets. The labelling is good, but some of the syntax and grammar is not great.

Great for Russian-language classification models, probably not great for fine-tuning Russian-langauge text generation.

- Virtual Assistant Query / Responses: ZennyKenny/ru_virtual_assistant_chatgpt_distill
- LLM Query / Responses: ZennyKenny/russian_llm_response_chatgpt_distill

Crazy how much language drift is still an issue, especially given that Russian constitutes nearly 5% of the content on the internet.
hesamation 
posted an update 15 days ago
prithivMLmods 
posted an update 16 days ago
view post
Post
1857
Luna, the single-speaker text-to-speech model, features a Radio & Atcosim-style sound with a female voice. It offers authentic radio podcast noise and empathetic speech generation, fine-tuned based on Orpheus's Llama-based speech generation state-of-the-art model. 🎙️

+ Model : prithivMLmods/Llama-3B-Mono-Luna
+ Collection : prithivMLmods/clean-radio-mono-voice-67e76fe1b3a87cc3bccef803
+ Reference ft : https://github.com/canopyai/Orpheus-TTS
+ Base Model : canopylabs/orpheus-3b-0.1-ft

I also tried some other clean-voice single-speaker models based on Orpheus. If you're interested, check out the collection.

🔉Try the Mono Luna demo here: http://colab.research.google.com/drive/1K0AAIOKDE5XE0znxXaiiUJvPSpFveteK
·
ZennyKenny 
posted an update 20 days ago
view post
Post
1932
Besides being the coolest named benchmark in the game, HellaSwag is an important measurement of здравый смысль (or common sense) in LLMs.

- More on HellaSwag: https://github.com/rowanz/hellaswag

I spent the afternoon benchmarking YandexGPT Pro 4th Gen, one of the Russian tech giant's premier models.

- Yandex HF Org: yandex
- More on Yandex models: https://yandex.cloud/ru/docs/foundation-models/concepts/yandexgpt/models

The eval notebook is available on GitHub and the resulting dataset is already on the HF Hub!

- Eval Notebook: https://github.com/kghamilton89/ai-explorer/blob/main/yandex-hellaswag/hellaswag-assess.ipynb
- Eval Dataset: ZennyKenny/yandexgptpro_4th_gen-hellaswag

And of course, everyone wants to see the results so have a look at the results in the context of other zero-shot experiments that I was able to find!
  • 2 replies
·
prithivMLmods 
posted an update 20 days ago
view post
Post
1696
Dropping some new Journey Art and Realism adapters for Flux.1-Dev, including Thematic Arts, 2021 Memory Adapters, Thread of Art, Black of Art, and more. For more details, visit the model card on Stranger Zone HF 🤗

+ Black-of-Art-Flux : strangerzonehf/Black-of-Art-Flux
+ Thread-of-Art-Flux : strangerzonehf/Thread-of-Art-Flux
+ 2021-Art-Flux : strangerzonehf/2021-Art-Flux
+ 3d-Station-Toon : strangerzonehf/3d-Station-Toon
+ New-Journey-Art-Flux : strangerzonehf/New-Journey-Art-Flux
+ Casual-Pencil-Pro : strangerzonehf/Casual-Pencil-Pro
+ Realism-H6-Flux : strangerzonehf/Realism-H6-Flux

- Repository Page : strangerzonehf

The best dimensions and inference settings for optimal results are as follows: A resolution of 1280 x 832 with a 3:2 aspect ratio is recommended for the best quality, while 1024 x 1024 with a 1:1 aspect ratio serves as the default option. For inference, the recommended number of steps ranges between 30 and 35 to achieve optimal output.
  • 1 reply
·
prithivMLmods 
posted an update 22 days ago
view post
Post
2605
Dropping Downstream tasks using newly initialized parameters and weights ([classifier.bias & weights]) support domain-specific 𝗶𝗺𝗮𝗴𝗲 𝗰𝗹𝗮𝘀𝘀𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻. Based on siglip2-base-patch16-224 and DomainNet (single-domain, multi-source adaptation), with Fashion-MNIST & More for experimental testing. 🧤☄️

Fashion-Mnist : prithivMLmods/Fashion-Mnist-SigLIP2
Mnist-Digits : prithivMLmods/Mnist-Digits-SigLIP2
Multisource-121 : prithivMLmods/Multisource-121-DomainNet
Painting-126 : prithivMLmods/Painting-126-DomainNet
Sketch-126 : prithivMLmods/Sketch-126-DomainNet
Clipart-126 : prithivMLmods/Clipart-126-DomainNet

Models are trained with different parameter settings for experimental purposes only, with the intent of further development. Refer to the model page below for instructions on running it with Transformers 🤗.

Collection : prithivMLmods/domainnet-0324-67e0e3c934c03cc40c6c8782

Citations : SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786 & Moment Matching for Multi-Source Domain Adaptation : https://arxiv.org/pdf/1812.01754

prithivMLmods 
posted an update 26 days ago
view post
Post
2292
Play with Orpheus TTS, a Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been fine-tuned to deliver human-level speech synthesis 🔥🗣️

👉GitHub [ Demo ] : https://github.com/PRITHIVSAKTHIUR/Orpheus-TTS-Edge

Demo supporting both text-to-speech and text-to-llm responses in speech.

> voice: tara, dan, emma, josh
> emotion: <laugh>, <chuckle>, <sigh>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.

🥠Orpheus-3b-0.1-ft
Model Page: canopylabs/orpheus-3b-0.1-ft

🥠Orpheus-3b-0.1-ft
Colab Inference Notebook: https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing

🥠Finetune [ orpheus-3b-0.1-pretrained ]
Resource: https://github.com/canopyai/Orpheus-TTS/tree/main/finetune

🥠Model-releases:
https://canopylabs.ai/model-releases
  • 1 reply
·
AtAndDev 
posted an update about 1 month ago
view post
Post
4203
There seems to multiple paid apps shared here that are based on models on hf, but some ppl sell their wrappers as "products" and promote them here. For a long time, hf was the best and only platform to do oss model stuff but with the recent AI website builders anyone can create a product (really crappy ones btw) and try to sell it with no contribution to oss stuff. Please dont do this, or try finetuning the models you use...
Sorry for filling yall feed with this bs but yk...
  • 6 replies
·
prithivMLmods 
posted an update about 1 month ago
view post
Post
952
Hey Guys! One Small Announcement 🤗
Stranger Zone now accepts LoRA requests!

✍️Request : https://huggingface.co/spaces/strangerzonehf/Request-LoRA [ or ] https://huggingface.co/spaces/strangerzonehf/Request-LoRA/discussions/1

Page : strangerzonehf

Describe the artistic properties by posting sample images or links to similar images in the request discussion. If the adapters you're asking for are truly creative and safe for work, I'll train and upload the LoRA to the Stranger Zone repo!

Thank you!
AtAndDev 
posted an update about 1 month ago
view post
Post
1599
Gemma 3 seems to be really good at human preference. Just waiting for ppl to see it.
prithivMLmods 
posted an update about 1 month ago
view post
Post
2508
Gemma-3-4B : Image and Video Inference 🖼️🎥

🧤Space: prithivMLmods/Gemma-3-Multimodal
🥠Git : https://github.com/PRITHIVSAKTHIUR/Gemma-3-Multimodal

@gemma3 : {Tag + Space_+ 'prompt'}
@video-infer : {Tag + Space_+ 'prompt'}

+ Gemma3-4B : google/gemma-3-4b-it
+ By default, it runs : prithivMLmods/Qwen2-VL-OCR-2B-Instruct

Gemma 3 Technical Report : https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf
  • 1 reply
·
not-lain 
posted an update about 1 month ago