The Mystery Bot ๐ต๏ธโโ๏ธ saga I posted about from earlier this week has been solved...๐ค
Cohere for AI has just announced its open source Aya Expanse multilingual model. The Initial release supports 23 languages with more on the way soon.๐ ๐
You can also try Aya Expanse via SMS on your mobile phone using the global WhatsApp number or one of the initial set of country specific numbers listed below.โฌ๏ธ
๐WhatsApp - +14313028498 Germany - (+49) 1771786365 USA โ +18332746219 United Kingdom โ (+44) 7418373332 Canada โ (+1) 2044107115 Netherlands โ (+31) 97006520757 Brazil โ (+55) 11950110169 Portugal โ (+351) 923249773 Italy โ (+39) 3399950813 Poland - (+48) 459050281
Researchers from Mila and Borealis AI just have shown that simplified versions of good old Recurrent Neural Networks (RNNs) can match the performance of today's transformers.
They took a fresh look at LSTMs (from 1997!) and GRUs (from 2014). They stripped these models down to their bare essentials, creating "minLSTM" and "minGRU". The key changes: โถ Removed dependencies on previous hidden states in the gates โท Dropped the tanh that had been added to restrict output range in order to avoid vanishing gradients โธ Ensured outputs are time-independent in scale (not sure I understood that well either, don't worry)
โก๏ธ As a result, you can use a โparallel scanโ algorithm to train these new, minimal RNNs, in parallel, taking 88% more memory but also making them 200x faster than their traditional counterparts for long sequences
๐ฅ The results are mind-blowing! Performance-wise, they go toe-to-toe with Transformers or Mamba.
And for Language Modeling, they need 2.5x fewer training steps than Transformers to reach the same performance! ๐
๐ค Why does this matter?
By showing there are simpler models with similar performance to transformers, this challenges the narrative that we need advanced architectures for better performance!
๐ฌย Franรงois Chollet wrote in a tweet about this paper:
โThe fact that there are many recent architectures coming from different directions that roughly match Transformers is proof that architectures aren't fundamentally important in the curve-fitting paradigm (aka deep learning)โ
โCurve-fitting is about embedding a dataset on a curve. The critical factor is the dataset, not the specific hard-coded bells and whistles that constrain the curve's shape.โ
Itโs the Bitter lesson by Rich Sutton striking again: donโt need fancy thinking architectures, just scale up your model and data!