Zephyr 7B β - DeepSparse

This repo contains model files for Zephyr 7B β optimized for DeepSparse, a CPU inference runtime for sparse models.

This model was quantized and pruned with SparseGPT, using SparseML.

Inference

Install DeepSparse LLM for fast inference on CPUs:

pip install deepsparse-nightly[llm]

Run in a Python pipeline:

from deepsparse import TextGeneration
prompt='### Instruction:\nWrite a Perl script that processes a log file and counts the occurrences of different HTTP status codes. The script should accept the log file path as a command-line argument and print the results to the console in descending order of frequency.\n\n### Response:\n'
model = TextGeneration(model_path="hf:neuralmagic/zephyr-7b-beta-pruned50-quant-ds")
print(model(prompt, max_new_tokens=200).generations[0].text)
"""
Here's a Perl script that meets the requirements:

use strict;
use warnings;

sub get_status_code {
    my ($status) = ();
    my ($match) = qr/\s*\d{3}\s*$/;
    return $1 if ($status =~ $match);
}

sub count_occurrences {
    my ($file) = shift;
    my (%counts) = ();
    open my $fh, '<', $file or die "Can't open $file: $!";
    while (my $line = <$fh>) {
        my ($status) = get_status_code($line);
        $counts{$status}++;
    }
    close $fh;
    return \%counts;
}

my ($file) = shift;
my (@codes) = qw(200 300 400 500);
my (@sorted) = ();

foreach my ($status, $count) (@codes, \%{ $status }->value()) {
    push @sorted, [$count, $status];
}

foreach my ($code, $freq) (@sorted) {
    print "$code\t$freq\n";
}

my ($results) = count_occurrences($file);
my (@sorted) = sort { $b[1] <=> $a[1] } @{$results};
foreach my ($code, $freq) (@sorted) {
    print "$code\t$freq\n";
}

"""

Prompt template

  ### Instruction:\n
  {prompt}
  ### Response:\n

Sparsification

For details on how this model was sparsified, see the recipe.yaml in this repo and follow the instructions below.

git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py HuggingFaceH4/zephyr-7b-beta open_platypus --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment 
cp deployment/model.onnx deployment/model-orig.onnx

Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:

import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")

Follow the instructions on our One Shot With SparseML page for a step-by-step guide for performing one-shot quantization of large language models.

Slack

For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community

Downloads last month
20
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for neuralmagic/zephyr-7b-beta-pruned50-quant-ds

Quantized
(23)
this model