iva-codeint-swift-small GPT-2 is (small version - 239.4M parameters) trained from scratch to obtain results in the text-to-code task tailored for Swift language used in native mobile development (iOS).
Usage
from transformers import pipeline
pipe = pipeline("text-generation", model="mvasiliniuc/iva-codeint-swift-small")
outputs = pipe("func triggerNSNotification")
Inference
API_URL = "https://api-inference.huggingface.co/models/mvasiliniuc/iva-codeint-swift-small"
headers = {"Authorization": "Bearer <key>"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": """
/*
A function that gets the current device operating system.
*/
"""
})
pprint.pprint(output, compact=True)
Training
Config | Value |
---|---|
seq length | 1024 |
weight decay | 0.1 |
learning rate | 0.0005 |
max eval steps | -1 |
shuffle buffer | 10000 |
max train steps | 150000 |
mixed precision | fp16 |
num warmup steps | 2000 |
train batch size | 5 |
valid batch size | 5 |
lr scheduler type | cosine |
save checkpoint steps | 15000 |
gradient checkpointing | false |
gradient accumulation steps | 1 |
Resources
Resources used for research:
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.