Summary
Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.
Model Architecture:
- Architecture:
GPT2LMHeadModel
- Total Parameters: 124,439,808
- Data Type (dtype): torch.bfloat16
- Model Size: 0.24 GB
Evaluation Metrics Comparison
step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | tinystoriesppl | zhwikippl |
---|---|---|---|---|---|---|---|---|---|
teacher eval | 43.75 | 61.75 | 11.8125 | 19.125 | |||||
0 | 0 | 949187772416.0 | 76416058130432.0 | 21.75 | 0.1221 | 16.381 | 8.191 | 3556769792.0 | 13950053777408.0 |
20 | 1.0 | 13248.0 | 64000.0 | 5.6562 | 0.0646 | 30.969 | 15.485 | 7712.0 | 181248.0 |
Resource Usage Comparison
- VRAM Use: 7.9388 GB
`# Distillation (Teacher -> Student) Architecture Difference:
- Architecture:
GPT2LMHeadModel
->GPT2LMHeadModel
- Total Parameters: 124,439,808 -> 124,439,808
- Data Type (dtype): 124439808 -> torch.bfloat16
- Model Size: 0.16 GB -> 0.24 GB
Module Diff Details
--- teacher model modules
+++ student model modules
@@ -7,15 +7,15 @@
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(attn): GPT2FlashAttention2(
- (c_attn): Linear8bitLt(in_features=768, out_features=2304, bias=True)
- (c_proj): Linear8bitLt(in_features=768, out_features=768, bias=True)
+ (c_attn): Conv1D()
+ (c_proj): Conv1D()
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
- (c_fc): Linear8bitLt(in_features=768, out_features=3072, bias=True)
- (c_proj): Linear8bitLt(in_features=3072, out_features=768, bias=True)
+ (c_fc): Conv1D()
+ (c_proj): Conv1D()
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
Train Dataset
Trained on 149,632 tokens from the wikimedia/wikipedia dataset.
- Num Samples:
158
- Subset:
20231101.en
- Split:
train
Training Objective
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
Hyperparameters
The following hyperparameters were used during training:
Expand
- learning_rate:
0.0001
- train_batch_size:
8
- eval_batch_size:
8
- seed:
42
- optimizer:
Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type:
constant
- lr_scheduler_warmup_ratio:
0.2
- num_epochs:
1.0
- distillation_objective:
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
- train_embeddings:
True
- lr_scheduler:
<torch.optim.lr_scheduler.LambdaLR object at 0x7f80845a7190>
- student_model_name_or_path:
None
- student_config_name_or_path:
None
- student_model_config:
None
- reinitialize_weights:
None
- copy_teacher_modules:
[('lm_head', False)]
- student_model_as_bitnet:
False
- student_model_compile:
False
- dropout:
None
- teacher_model_name_or_path:
gpt2
- teacher_load_in_8bit:
True
- teacher_load_in_4bit:
False
- teacher_model_compile:
False
- dataset_uri:
wikimedia/wikipedia
- dataset_subset:
20231101.en
- dataset_split:
train
- dataset_column_name:
text
- dataset_sample_size:
160
- dataset_test_size:
0.01
- gradient_accumulation_steps:
1
- weight_decay:
0.0
- max_grad_norm:
1.0
- warmup_ratio:
0.2
- warmup_steps:
0
- gradient_checkpointing:
True
Framework Versions
- Distily 0.2.0
- Transformers 4.44.0
- Pytorch 2.3.0
- Datasets 2.21.0
- Downloads last month
- 3
Model tree for lapp0/distily_modelcard_try
Base model
openai-community/gpt2