Edit model card

Summary

Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.

Model Architecture:

  • Architecture: GPT2LMHeadModel
  • Total Parameters: 124,439,808
  • Data Type (dtype): torch.bfloat16
  • Model Size: 0.24 GB

Evaluation Metrics Comparison

step epoch enwikippl frwikippl loss runtime samples_per_second steps_per_second tinystoriesppl zhwikippl
teacher eval 43.75 61.75 11.8125 19.125
0 0 949187772416.0 76416058130432.0 21.75 0.1221 16.381 8.191 3556769792.0 13950053777408.0
20 1.0 13248.0 64000.0 5.6562 0.0646 30.969 15.485 7712.0 181248.0

Resource Usage Comparison

  • VRAM Use: 7.9388 GB

`# Distillation (Teacher -> Student) Architecture Difference:

  • Architecture: GPT2LMHeadModel -> GPT2LMHeadModel
  • Total Parameters: 124,439,808 -> 124,439,808
  • Data Type (dtype): 124439808 -> torch.bfloat16
  • Model Size: 0.16 GB -> 0.24 GB
Module Diff Details
--- teacher model modules
+++ student model modules
@@ -7,15 +7,15 @@
       (0-11): 12 x GPT2Block(
         (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
         (attn): GPT2FlashAttention2(
-          (c_attn): Linear8bitLt(in_features=768, out_features=2304, bias=True)
-          (c_proj): Linear8bitLt(in_features=768, out_features=768, bias=True)
+          (c_attn): Conv1D()
+          (c_proj): Conv1D()
           (attn_dropout): Dropout(p=0.1, inplace=False)
           (resid_dropout): Dropout(p=0.1, inplace=False)
         )
         (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
         (mlp): GPT2MLP(
-          (c_fc): Linear8bitLt(in_features=768, out_features=3072, bias=True)
-          (c_proj): Linear8bitLt(in_features=3072, out_features=768, bias=True)
+          (c_fc): Conv1D()
+          (c_proj): Conv1D()
           (act): NewGELUActivation()
           (dropout): Dropout(p=0.1, inplace=False)
         )

Train Dataset

Trained on 149,632 tokens from the wikimedia/wikipedia dataset.

  • Num Samples: 158
  • Subset: 20231101.en
  • Split: train

Training Objective

DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))

Hyperparameters

The following hyperparameters were used during training:

Expand
  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 1.0
  • distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
  • train_embeddings: True
  • lr_scheduler: <torch.optim.lr_scheduler.LambdaLR object at 0x7f80845a7190>
  • student_model_name_or_path: None
  • student_config_name_or_path: None
  • student_model_config: None
  • reinitialize_weights: None
  • copy_teacher_modules: [('lm_head', False)]
  • student_model_as_bitnet: False
  • student_model_compile: False
  • dropout: None
  • teacher_model_name_or_path: gpt2
  • teacher_load_in_8bit: True
  • teacher_load_in_4bit: False
  • teacher_model_compile: False
  • dataset_uri: wikimedia/wikipedia
  • dataset_subset: 20231101.en
  • dataset_split: train
  • dataset_column_name: text
  • dataset_sample_size: 160
  • dataset_test_size: 0.01
  • gradient_accumulation_steps: 1
  • weight_decay: 0.0
  • max_grad_norm: 1.0
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • gradient_checkpointing: True

Framework Versions

  • Distily 0.2.0
  • Transformers 4.44.0
  • Pytorch 2.3.0
  • Datasets 2.21.0
Downloads last month
3
Safetensors
Model size
124M params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lapp0/distily_modelcard_try

Quantized
(50)
this model

Dataset used to train lapp0/distily_modelcard_try