distilhubert-course-model2-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6319
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0479 1.0 113 1.9649 0.57
1.2746 2.0 226 1.3397 0.62
0.9327 3.0 339 0.9767 0.72
0.7575 4.0 452 0.8140 0.77
0.5051 5.0 565 0.6947 0.8
0.4299 6.0 678 0.6564 0.8
0.2753 7.0 791 0.7915 0.74
0.2209 8.0 904 0.5574 0.81
0.2022 9.0 1017 0.6053 0.85
0.0333 10.0 1130 0.5527 0.88
0.1367 11.0 1243 0.5989 0.87
0.0141 12.0 1356 0.6271 0.86
0.0104 13.0 1469 0.6737 0.87
0.0093 14.0 1582 0.6163 0.86
0.0099 15.0 1695 0.6319 0.87

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
15
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for korginevvostorge/distilhubert-course-model2-finetuned-gtzan

Finetuned
(414)
this model

Dataset used to train korginevvostorge/distilhubert-course-model2-finetuned-gtzan

Evaluation results