metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-course-model2-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
distilhubert-course-model2-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6319
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0479 | 1.0 | 113 | 1.9649 | 0.57 |
1.2746 | 2.0 | 226 | 1.3397 | 0.62 |
0.9327 | 3.0 | 339 | 0.9767 | 0.72 |
0.7575 | 4.0 | 452 | 0.8140 | 0.77 |
0.5051 | 5.0 | 565 | 0.6947 | 0.8 |
0.4299 | 6.0 | 678 | 0.6564 | 0.8 |
0.2753 | 7.0 | 791 | 0.7915 | 0.74 |
0.2209 | 8.0 | 904 | 0.5574 | 0.81 |
0.2022 | 9.0 | 1017 | 0.6053 | 0.85 |
0.0333 | 10.0 | 1130 | 0.5527 | 0.88 |
0.1367 | 11.0 | 1243 | 0.5989 | 0.87 |
0.0141 | 12.0 | 1356 | 0.6271 | 0.86 |
0.0104 | 13.0 | 1469 | 0.6737 | 0.87 |
0.0093 | 14.0 | 1582 | 0.6163 | 0.86 |
0.0099 | 15.0 | 1695 | 0.6319 | 0.87 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0