Longformer / longformer-base-4096
Model description
Longformer is a transformer model for long documents. This version of Longformer presented in An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022).
The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of original Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096.
Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations.
Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification or question answering.
How to use
You can use this model directly with a pipeline for masked language modeling:
from transformers import pipeline
mlm_model = pipeline('fill-mask', model='kiddothe2b/longformer-base-4096', trust_remote_code=True)
mlm_model("Hello I'm a <mask> model.")
You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks:
from transformers import AutoTokenizer, AutoModelforSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-base-4096", trust_remote_code=True)
doc_classifier = AutoModelforSequenceClassification("kiddothe2b/longformer-base-4096", trust_remote_code=True)
Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions.
Training procedure
Training and evaluation data
The model has been warm-started from roberta-base checkpoint and has been continued pre-trained for additional 50k steps in long sequences (> 1024 subwords) of C4 (Raffel et al., 2020).
Training hyperparameters
TThe following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 50000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7067 | 0.2 | 10000 | 1.5923 | 0.6714 |
1.6532 | 0.4 | 20000 | 1.5494 | 0.6784 |
1.622 | 0.6 | 30000 | 1.5208 | 0.6830 |
1.588 | 0.8 | 40000 | 1.4880 | 0.6876 |
1.5682 | 1.0 | 50000 | 1.4680 | 0.6908 |
Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0
- Datasets 2.0.0
- Tokenizers 0.11.6
Citing
If you use HAT in your research, please cite: An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification. Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint).
@misc{chalkidis-etal-2022-hat,
url = {https://arxiv.org/abs/2210.05529},
author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond},
title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification},
publisher = {arXiv},
year = {2022},
}
Also cite the original work: Longformer: The Long-Document Transformer.
@article{Beltagy2020Longformer,
title={Longformer: The Long-Document Transformer},
author={Iz Beltagy and Matthew E. Peters and Arman Cohan},
journal={arXiv:2004.05150},
year={2020},
}
- Downloads last month
- 101