tulu2-13b-cost-tulumix-5e-6

This model is a fine-tuned version of allenai/tulu-2-13b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9352
  • Rewards/chosen: -3.1557
  • Rewards/rejected: -4.3037
  • Rewards/accuracies: 0.6135
  • Rewards/margins: 1.1480
  • Rewards/margins Max: 6.7338
  • Rewards/margins Min: -3.1653
  • Rewards/margins Std: 3.2319
  • Logps/rejected: -746.0304
  • Logps/chosen: -640.5291
  • Logits/rejected: -1.0143
  • Logits/chosen: -1.1338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Rewards/margins Max Rewards/margins Min Rewards/margins Std Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1926 1.0 3174 0.9352 -3.1557 -4.3037 0.6135 1.1480 6.7338 -3.1653 3.2319 -746.0304 -640.5291 -1.0143 -1.1338

Framework versions

  • PEFT 0.7.1
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for just1nseo/tulu2-13b-cost-tulumix-5e-6

Finetuned
allenai/tulu-2-13b
Adapter
(12)
this model