Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-v0.1
is_mistral_derived_model: true
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: jspr/bts-section-headers-with-prompt
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

# using lora for lower cost
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj

sequence_len: 32768
sample_packing: false # makes it faster but uses more memory
pad_to_sequence_len: false

model_config:
  rope_scaling:
    type: linear
    factor: 8.0

hub_model_id: jspr/bts_mistral_7b_v4.1_32k_peft
hub_strategy: end
hub_private_repo: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

# only 2 epochs because of small dataset
gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 16
eval_sample_packing: false
saves_per_epoch: 1
debug:

deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

bts_mistral_7b_v4.1_32k_peft

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.7906 0.01 1 1.7837
1.8394 0.25 39 1.7592
1.7005 0.5 78 1.7543
1.7689 0.75 117 1.7519

Framework versions

  • PEFT 0.8.2
  • Transformers 4.39.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.0
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for jspr/bts_mistral_7b_v4.1_32k_peft

Adapter
(1214)
this model