Edit model card

cvt-13-384-22k-fv-finetuned-memes

This model is a fine-tuned version of microsoft/cvt-13-384-22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5761
  • Accuracy: 0.8315
  • Precision: 0.8302
  • Recall: 0.8315
  • F1: 0.8292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3821 0.99 20 1.2780 0.4969 0.5083 0.4969 0.4458
1.0785 1.99 40 0.8633 0.6669 0.6658 0.6669 0.6500
0.8862 2.99 60 0.7110 0.7218 0.7258 0.7218 0.7013
0.665 3.99 80 0.5515 0.8045 0.8137 0.8045 0.8050
0.6056 4.99 100 0.5956 0.7960 0.8041 0.7960 0.7846
0.4779 5.99 120 0.6229 0.7937 0.7945 0.7937 0.7857
0.4554 6.99 140 0.5355 0.8099 0.8126 0.8099 0.8086
0.4249 7.99 160 0.5447 0.8269 0.8275 0.8269 0.8236
0.4313 8.99 180 0.5530 0.8153 0.8140 0.8153 0.8132
0.423 9.99 200 0.5346 0.8238 0.8230 0.8238 0.8223
0.3997 10.99 220 0.5413 0.8338 0.8347 0.8338 0.8338
0.4095 11.99 240 0.5999 0.8207 0.8231 0.8207 0.8177
0.3979 12.99 260 0.5632 0.8284 0.8255 0.8284 0.8250
0.3408 13.99 280 0.5725 0.8207 0.8198 0.8207 0.8196
0.3828 14.99 300 0.5631 0.8277 0.8258 0.8277 0.8260
0.3595 15.99 320 0.6005 0.8308 0.8297 0.8308 0.8275
0.3789 16.99 340 0.5840 0.8300 0.8271 0.8300 0.8273
0.3545 17.99 360 0.5983 0.8246 0.8226 0.8246 0.8222
0.3472 18.99 380 0.5795 0.8416 0.8382 0.8416 0.8390
0.355 19.99 400 0.5761 0.8315 0.8302 0.8315 0.8292

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results