paul
update model card README.md
37a12ae
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: cvt-13-384-22k-fv-finetuned-memes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8315301391035549
          - name: Precision
            type: precision
            value: 0.8302128280229624
          - name: Recall
            type: recall
            value: 0.8315301391035549
          - name: F1
            type: f1
            value: 0.8292026505769348

cvt-13-384-22k-fv-finetuned-memes

This model is a fine-tuned version of microsoft/cvt-13-384-22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5761
  • Accuracy: 0.8315
  • Precision: 0.8302
  • Recall: 0.8315
  • F1: 0.8292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3821 0.99 20 1.2780 0.4969 0.5083 0.4969 0.4458
1.0785 1.99 40 0.8633 0.6669 0.6658 0.6669 0.6500
0.8862 2.99 60 0.7110 0.7218 0.7258 0.7218 0.7013
0.665 3.99 80 0.5515 0.8045 0.8137 0.8045 0.8050
0.6056 4.99 100 0.5956 0.7960 0.8041 0.7960 0.7846
0.4779 5.99 120 0.6229 0.7937 0.7945 0.7937 0.7857
0.4554 6.99 140 0.5355 0.8099 0.8126 0.8099 0.8086
0.4249 7.99 160 0.5447 0.8269 0.8275 0.8269 0.8236
0.4313 8.99 180 0.5530 0.8153 0.8140 0.8153 0.8132
0.423 9.99 200 0.5346 0.8238 0.8230 0.8238 0.8223
0.3997 10.99 220 0.5413 0.8338 0.8347 0.8338 0.8338
0.4095 11.99 240 0.5999 0.8207 0.8231 0.8207 0.8177
0.3979 12.99 260 0.5632 0.8284 0.8255 0.8284 0.8250
0.3408 13.99 280 0.5725 0.8207 0.8198 0.8207 0.8196
0.3828 14.99 300 0.5631 0.8277 0.8258 0.8277 0.8260
0.3595 15.99 320 0.6005 0.8308 0.8297 0.8308 0.8275
0.3789 16.99 340 0.5840 0.8300 0.8271 0.8300 0.8273
0.3545 17.99 360 0.5983 0.8246 0.8226 0.8246 0.8222
0.3472 18.99 380 0.5795 0.8416 0.8382 0.8416 0.8390
0.355 19.99 400 0.5761 0.8315 0.8302 0.8315 0.8292

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1