MonarchPipe-7B-slerp
MonarchPipe-7B-slerp is a merge of the following models using LazyMergekit:
π Eval
Nous
Eval results from the Nous benchmark suite (performed using LLM AutoEval).
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
MonarchPipe-7B-slerp π | 58.77 | 46.12 | 74.89 | 66.59 | 47.49 |
AlphaMonarch-7B π | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
Monarch-7B π | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
OpenHermes-2.5-Mistral-7B π | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
NeuralHermes-2.5-Mistral-7B π | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
𧩠Configuration
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1227
layer_range: [0, 32]
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1227
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ichigoberry/MonarchPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 81
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ichigoberry/MonarchPipe-7B-slerp
Merge model
this model