Edit model card

image/jpeg

Monarch-7B

Update 13/02/24: Monarch-7B is the best-performing model on the YALL leaderboard.

Monarch-7B is a merge of the following models using LazyMergekit:

πŸ† Evaluation

The evaluation was performed using LLM AutoEval on Nous suite. See the entire leaderboard here.

Model Average AGIEval GPT4All TruthfulQA Bigbench
Monarch-7B πŸ“„ 62.68 45.48 77.07 78.04 50.14
teknium/OpenHermes-2.5-Mistral-7B πŸ“„ 52.42 42.75 72.99 52.99 40.94
mlabonne/NeuralHermes-2.5-Mistral-7B πŸ“„ 53.51 43.67 73.24 55.37 41.76
mlabonne/NeuralBeagle14-7B πŸ“„ 60.25 46.06 76.77 70.32 47.86
eren23/dpo-binarized-NeuralTrix-7B πŸ“„ 62.5 44.57 76.34 79.81 49.27
CultriX/NeuralTrix-7B-dpo πŸ“„ 62.5 44.61 76.33 79.8 49.24

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: mlabonne/OmniTruthyBeagle-7B-v0
    parameters:
      density: 0.65
      weight: 0.36
  - model: mlabonne/NeuBeagle-7B
    parameters:
      density: 0.6
      weight: 0.34
  - model: mlabonne/NeuralOmniBeagle-7B 
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Monarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.25
AI2 Reasoning Challenge (25-Shot) 73.04
HellaSwag (10-Shot) 89.03
MMLU (5-Shot) 64.41
TruthfulQA (0-shot) 77.35
Winogrande (5-shot) 84.61
GSM8k (5-shot) 69.07
Downloads last month
244
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mlabonne/Monarch-7B

Space using mlabonne/Monarch-7B 1

Collection including mlabonne/Monarch-7B

Evaluation results