Competitive Programming LLM for Python Language
This model is a finetuned version of codegen350M-mono on python code dataset that uses alpaca style prompts while training.
Prompt function
'''
This function generates prompts using the problem description and input.
@param1 instruction: str - text problem description
@param2 inputs: str - input to the program
'''
def generate_prompt(instruction, inputs=""):
text = ("Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
"### Instruction:\n"
f"{instruction}\n\n"
"### Input:\n"
f"{inputs}\n\n"
"### Output:\n")
return text
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("iamtarun/codegen-350M-mono-4bit-qlora", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("iamtarun/codegen-350M-mono-4bit-qlora")
# loading model for inference
model.eval()
# inference function
'''
This function takes text prompt as input which is generated from the generate_prompt function and returns the generated response
@param1 prompt: str - text prompt generated using generate_prompt function.
'''
def pipe(prompt):
device = "cuda"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(**inputs,
max_length=512,
do_sample=True,
temperature=0.5,
top_p=0.95,
repetition_penalty=1.15)
return tokenizer.decode(output[0].tolist(),
skip_special_tokens=True,
clean_up_tokenization_space=False)
# generating code for a problem description
instruction = "Write a function to calculate square of a number in python"
inputs = "number = 5"
prompt = generate_prompt(instruction, inputs)
print(pipe(prompt))
print("\n", "="*100)
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.