huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int4

This is a GPTQ-quantized 4-bit version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned.

This is just the quantification test for GPTQ, with only one dataset: "gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm.".

Although it was just a simple fine-tuning and quantization, it solved this discussion.

If you need to fine-tune your data and quantify it, please contact us: support@huihui.ai

Use with transformers

Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.

Make sure to update your transformers installation via pip install --upgrade transformers.

See the snippet below for usage with Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the model and tokenizer
model_name = "huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int4"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clear":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
        pad_token_id=tokenizer.pad_token_id
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Response: {response}")
Downloads last month
430
Safetensors
Model size
11.3B params
Tensor type
FP16
·
I32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int4