File size: 10,149 Bytes
7cc8b07 7e1dd3f f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 57b35cf 7cc8b07 c7ccd67 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 6e62725 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 7cc8b07 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 6e62725 f6fc7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
---
base_model: google/gemma-2-9b-it
license: gemma
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- gemma2
- google
- autoawq
---
> [!IMPORTANT]
> This repository is a community-driven quantized version of the original model [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) which is the BF16 half-precision official version released by Google.
> [!WARNING]
> This model has been quantized using `transformers` 4.45.0, meaning that the tokenizer available in this repository won't be compatible with lower versions. Same applies for e.g. Text Generation Inference (TGI) that only installs `transformers` 4.45.0 or higher starting in v2.3.1.
## Model Information
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.
This repository contains [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) quantized using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
## Model Usage
> [!NOTE]
> In order to run the inference with Gemma2 9B Instruct AWQ in INT4, around 6 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.
### 🤗 Transformers
In order to run the inference with Gemma2 9B Instruct AWQ in INT4, you need to install the following packages:
```bash
pip install -q --upgrade "transformers>=4.45.0" accelerate
INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c
```
To run the inference on top of Gemma2 9B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
model_id = "hugging-quants/gemma-2-9b-it-AWQ-INT4"
quantization_config = AwqConfig(
bits=4,
fuse_max_seq_len=512, # Note: Update this as per your use-case
do_fuse=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
quantization_config=quantization_config
)
prompt = [
{"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
```
### AutoAWQ
In order to run the inference with Gemma2 9B Instruct AWQ in INT4, you need to install the following packages:
```bash
pip install -q --upgrade "transformers>=4.45.0" accelerate
INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c
```
Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
```python
import torch
from awq import AutoAWQForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/gemma-2-9b-it-AWQ-INT4"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoAWQForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
prompt = [
{"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
```
The AutoAWQ script has been adapted from [`AutoAWQ/examples/generate.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).
### 🤗 Text Generation Inference (TGI)
To run the `text-generation-launcher` with Gemma2 9B Instruct AWQ in INT4 with Marlin kernels for optimized inference speed, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)).
Then you just need to run the TGI v2.3.0 (or higher) Docker container as follows:
```bash
docker run --gpus all --shm-size 1g -ti -p 8080:80 \
-v hf_cache:/data \
-e MODEL_ID=hugging-quants/gemma-2-9b-it-AWQ-INT4 \
-e QUANTIZE=awq \
-e MAX_INPUT_LENGTH=4000 \
-e MAX_TOTAL_TOKENS=4096 \
ghcr.io/huggingface/text-generation-inference:2.3.0
```
> [!NOTE]
> TGI will expose different endpoints, to see all the endpoints available check [TGI OpenAPI Specification](https://huggingface.github.io/text-generation-inference/#/).
To send request to the deployed TGI endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
```bash
curl 0.0.0.0:8080/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "What is Deep Learning?"
}
],
"max_tokens": 128
}'
```
Or programatically via the `huggingface_hub` Python client as follows:
```python
import os
from huggingface_hub import InferenceClient
client = InferenceClient(base_url="http://0.0.0.0:8080", api_key="-")
chat_completion = client.chat.completions.create(
model="hugging-quants/gemma-2-9b-it-AWQ-INT4",
messages=[
{"role": "user", "content": "What is Deep Learning?"},
],
max_tokens=128,
)
```
Alternatively, the OpenAI Python client can also be used (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
```python
import os
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:8080/v1", api_key="-")
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": "What is Deep Learning?"},
],
max_tokens=128,
)
```
### vLLM
To run vLLM with Gemma2 9B Instruct AWQ in INT4, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and run the latest vLLM Docker container as follows:
```bash
docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \
-v hf_cache:/root/.cache/huggingface \
vllm/vllm-openai:latest \
--model hugging-quants/gemma-2-9b-it-AWQ-INT4 \
--max-model-len 4096
```
To send request to the deployed vLLM endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
```bash
curl 0.0.0.0:8000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "hugging-quants/gemma-2-9b-it-AWQ-INT4",
"messages": [
{
"role": "user",
"content": "What is Deep Learning?"
}
],
"max_tokens": 128
}'
```
Or programatically via the `openai` Python client (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
```python
import os
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key=os.getenv("VLLM_API_KEY", "-"))
chat_completion = client.chat.completions.create(
model="hugging-quants/gemma-2-9b-it-AWQ-INT4",
messages=[
{"role": "user", "content": "What is Deep Learning?"},
],
max_tokens=128,
)
```
## Quantization Reproduction
> [!IMPORTANT]
> In order to quantize Gemma2 9B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~20GiB, and an NVIDIA GPU with 16GiB of VRAM to quantize it.
>
> Additionally, you also need to accept the Gemma2 access conditions, as it is a gated model that requires accepting those first.
In order to quantize Gemma2 9B Instruct, first install the following packages:
```bash
pip install -q --upgrade "torch==2.3.0" "transformers>=4.45.0" accelerate
INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c
```
Then you need to install the `huggingface_hub` Python SDK and login to the Hugging Face Hub.
```bash
pip install -q --upgrade huggingface_hub
huggingface-cli login
```
Then run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py):
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "google/gemma-2-9b-it"
quant_path = "hugging-quants/gemma-2-9b-it-AWQ-INT4"
quant_config = {
"zero_point": True,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM",
}
# Load model
model = AutoAWQForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, use_cache=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')
``` |