alvarobartt HF staff commited on
Commit
f6fc7c3
1 Parent(s): 028abac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +263 -181
README.md CHANGED
@@ -1,199 +1,281 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: gemma
3
+ language:
4
+ - en
5
  library_name: transformers
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - gemma2
9
+ - google
10
+ - autoawq
11
  ---
12
 
13
+ > [!IMPORTANT]
14
+ > This repository is a community-driven quantized version of the original model [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) which is the BF16 half-precision official version released by Meta AI.
15
 
16
+ ## Model Information
17
 
18
+ Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.
19
 
20
+ This repository contains [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) quantized using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
21
 
22
+ ## Model Usage
23
 
24
+ > [!NOTE]
25
+ > In order to run the inference with Gemma2 9B Instruct AWQ in INT4, around 6 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
26
 
27
+ In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.
28
 
29
+ ### 🤗 Transformers
30
 
31
+ In order to run the inference with Gemma2 9B Instruct AWQ in INT4, you need to install the following packages:
 
 
 
 
 
 
32
 
33
+ ```bash
34
+ pip install -q --upgrade transformers autoawq accelerate
35
+ ```
36
 
37
+ To run the inference on top of Gemma2 9B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
38
 
39
+ ```python
40
+ import torch
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
42
 
43
+ model_id = "hugging-quants/gemma-2-9b-it-AWQ-INT4"
44
 
45
+ quantization_config = AwqConfig(
46
+ bits=4,
47
+ fuse_max_seq_len=512, # Note: Update this as per your use-case
48
+ do_fuse=True,
49
+ )
50
 
51
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
52
+ model = AutoModelForCausalLM.from_pretrained(
53
+ model_id,
54
+ torch_dtype=torch.float16,
55
+ low_cpu_mem_usage=True,
56
+ device_map="auto",
57
+ quantization_config=quantization_config
58
+ )
59
+
60
+ prompt = [
61
+ {"role": "user", "content": "What's Deep Learning?"},
62
+ ]
63
+ inputs = tokenizer.apply_chat_template(
64
+ prompt,
65
+ tokenize=True,
66
+ add_generation_prompt=True,
67
+ return_tensors="pt",
68
+ return_dict=True,
69
+ ).to("cuda")
70
+
71
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
72
+ print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
73
+ ```
74
+
75
+ ### AutoAWQ
76
+
77
+ In order to run the inference with Gemma2 9B Instruct AWQ in INT4, you need to install the following packages:
78
+
79
+ ```bash
80
+ pip install -q --upgrade transformers autoawq accelerate
81
+ ```
82
+
83
+ Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
84
+
85
+ ```python
86
+ import torch
87
+ from awq import AutoAWQForCausalLM
88
+ from transformers import AutoModelForCausalLM, AutoTokenizer
89
+
90
+ model_id = "hugging-quants/gemma-2-9b-it-AWQ-INT4"
91
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
92
+ model = AutoAWQForCausalLM.from_pretrained(
93
+ model_id,
94
+ torch_dtype=torch.float16,
95
+ low_cpu_mem_usage=True,
96
+ device_map="auto",
97
+ )
98
+
99
+ prompt = [
100
+ {"role": "user", "content": "What's Deep Learning?"},
101
+ ]
102
+ inputs = tokenizer.apply_chat_template(
103
+ prompt,
104
+ tokenize=True,
105
+ add_generation_prompt=True,
106
+ return_tensors="pt",
107
+ return_dict=True,
108
+ ).to("cuda")
109
+
110
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
111
+ print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
112
+ ```
113
+
114
+ The AutoAWQ script has been adapted from [`AutoAWQ/examples/generate.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).
115
+
116
+ ### 🤗 Text Generation Inference (TGI)
117
+
118
+ To run the `text-generation-launcher` with Gemma2 9B Instruct AWQ in INT4 with Marlin kernels for optimized inference speed, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and the `huggingface_hub` Python package as you need to login to the Hugging Face Hub.
119
+
120
+ ```bash
121
+ pip install -q --upgrade huggingface_hub
122
+ huggingface-cli login
123
+ ```
124
+
125
+ Then you just need to run the TGI v2.2.0 (or higher) Docker container as follows:
126
+
127
+ ```bash
128
+ docker run --gpus all --shm-size 1g -ti -p 8080:80 \
129
+ -v hf_cache:/data \
130
+ -e MODEL_ID=hugging-quants/gemma-2-9b-it-AWQ-INT4 \
131
+ -e QUANTIZE=awq \
132
+ -e HF_TOKEN=$(cat ~/.cache/huggingface/token) \
133
+ -e MAX_INPUT_LENGTH=4000 \
134
+ -e MAX_TOTAL_TOKENS=4096 \
135
+ ghcr.io/huggingface/text-generation-inference:2.2.0
136
+ ```
137
+
138
+ > [!NOTE]
139
+ > TGI will expose different endpoints, to see all the endpoints available check [TGI OpenAPI Specification](https://huggingface.github.io/text-generation-inference/#/).
140
+
141
+ To send request to the deployed TGI endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
142
+
143
+ ```bash
144
+ curl 0.0.0.0:8080/v1/chat/completions \
145
+ -X POST \
146
+ -H 'Content-Type: application/json' \
147
+ -d '{
148
+ "model": "tgi",
149
+ "messages": [
150
+ {
151
+ "role": "user",
152
+ "content": "What is Deep Learning?"
153
+ }
154
+ ],
155
+ "max_tokens": 128
156
+ }'
157
+ ```
158
+
159
+ Or programatically via the `huggingface_hub` Python client as follows:
160
+
161
+ ```python
162
+ import os
163
+ from huggingface_hub import InferenceClient
164
+
165
+ client = InferenceClient(base_url="http://0.0.0.0:8080", api_key=os.getenv("HF_TOKEN", "-"))
166
+
167
+ chat_completion = client.chat.completions.create(
168
+ model="hugging-quants/gemma-2-9b-it-AWQ-INT4",
169
+ messages=[
170
+ {"role": "user", "content": "What is Deep Learning?"},
171
+ ],
172
+ max_tokens=128,
173
+ )
174
+ ```
175
+
176
+ Alternatively, the OpenAI Python client can also be used (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
177
+
178
+ ```python
179
+ import os
180
+ from openai import OpenAI
181
+
182
+ client = OpenAI(base_url="http://0.0.0.0:8080/v1", api_key=os.getenv("OPENAI_API_KEY", "-"))
183
+
184
+ chat_completion = client.chat.completions.create(
185
+ model="tgi",
186
+ messages=[
187
+ {"role": "user", "content": "What is Deep Learning?"},
188
+ ],
189
+ max_tokens=128,
190
+ )
191
+ ```
192
+
193
+ ### vLLM
194
+
195
+ To run vLLM with Gemma2 9B Instruct AWQ in INT4, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and run the latest vLLM Docker container as follows:
196
+
197
+ ```bash
198
+ docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \
199
+ -v hf_cache:/root/.cache/huggingface \
200
+ vllm/vllm-openai:latest \
201
+ --model hugging-quants/gemma-2-9b-it-AWQ-INT4 \
202
+ --max-model-len 4096
203
+ ```
204
+
205
+ To send request to the deployed vLLM endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
206
+
207
+ ```bash
208
+ curl 0.0.0.0:8000/v1/chat/completions \
209
+ -X POST \
210
+ -H 'Content-Type: application/json' \
211
+ -d '{
212
+ "model": "hugging-quants/gemma-2-9b-it-AWQ-INT4",
213
+ "messages": [
214
+ {
215
+ "role": "user",
216
+ "content": "What is Deep Learning?"
217
+ }
218
+ ],
219
+ "max_tokens": 128
220
+ }'
221
+ ```
222
+
223
+ Or programatically via the `openai` Python client (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
224
+
225
+ ```python
226
+ import os
227
+ from openai import OpenAI
228
+
229
+ client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key=os.getenv("VLLM_API_KEY", "-"))
230
+
231
+ chat_completion = client.chat.completions.create(
232
+ model="hugging-quants/gemma-2-9b-it-AWQ-INT4",
233
+ messages=[
234
+ {"role": "user", "content": "What is Deep Learning?"},
235
+ ],
236
+ max_tokens=128,
237
+ )
238
+ ```
239
+
240
+ ## Quantization Reproduction
241
+
242
+ > [!NOTE]
243
+ > In order to quantize Gemma2 9B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~20GiB, and an NVIDIA GPU with 16GiB of VRAM to quantize it.
244
+
245
+ In order to quantize Gemma2 9B Instruct, first install the following packages:
246
+
247
+ ```bash
248
+ pip install -q --upgrade "torch==2.3.0" transformers accelerate
249
+ INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c
250
+ ```
251
+
252
+ Then run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py):
253
+
254
+ ```python
255
+ from awq import AutoAWQForCausalLM
256
+ from transformers import AutoTokenizer
257
+
258
+ model_path = "google/gemma-2-9b-it"
259
+ quant_path = "hugging-quants/gemma-2-9b-it-AWQ-INT4"
260
+ quant_config = {
261
+ "zero_point": True,
262
+ "q_group_size": 128,
263
+ "w_bit": 4,
264
+ "version": "GEMM",
265
+ }
266
+
267
+ # Load model
268
+ model = AutoAWQForCausalLM.from_pretrained(
269
+ model_path, low_cpu_mem_usage=True, use_cache=False,
270
+ )
271
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
272
+
273
+ # Quantize
274
+ model.quantize(tokenizer, quant_config=quant_config)
275
+
276
+ # Save quantized model
277
+ model.save_quantized(quant_path)
278
+ tokenizer.save_pretrained(quant_path)
279
+
280
+ print(f'Model is quantized and saved at "{quant_path}"')
281
+ ```