Edit model card


CodeGen-350M-multi-xlcost is a CodeGen model fine-tuned on the Python split of XLCost dataset.


You can load the CodeGen-350M-multi-xlcost model and tokenizer directly in transformers:

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("giulio98/codegen-350M-multi-xlcost")
model = AutoModelForCausalLM.from_pretrained("giulio98/codegen-350M-multi-xlcost")

text = tokenizer.eos_token + "\'\'\'\n" + "function to add two numbers" + "\n\'\'\'\n" + "###\n"
input_ids = tokenizer(text, return_tensors="pt").input_ids

generated_ids = model.generate(input_ids, max_length=128)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))


function to add two numbers 
def add(a, b):
    return a + b


The model was finetuned on XLCost-single-prompt, an improved version of the original XLCost dataset xlcost-text-to-code. Below the hyperparameters.

Hyperparameter value
Per device train batch size 8
Context size 1024
Training steps 258
Gradient accumulation 4
Gradient checkpointing True
Learning rate 1.8e-05
Weight decay 0.0
Warmup steps 10
Schedule linear

The training was executed on 1 x V100 (16GB) GPU for 6h 42m


We evaluated the model on the first 400 samples of XLCOST's XLCost-single-prompt test split and comparing the outputs of the generated codes with respect to the expected output using pass@k metric.

Metric codegen-350M-multi-xlcost codegen-350M-mono(zero-shot) codegen-350M-mono (one-shot) codegen-350M-mono(few-shot)
pass@1 3.70% 0.4% 0.35% 0.48%
pass@10 14.5% 3.5% 3 % 3.75%

The pass@k metric tells the probability that at least one out of k generations passes the tests.


  title={A Conversational Paradigm for Program Synthesis},
  author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming},
  journal={arXiv preprint},
Downloads last month
Hosted inference API
Text Generation
This model can be loaded on the Inference API on-demand.

Dataset used to train giulio98/codegen-350M-multi-xlcost

Evaluation results