bert-tiny-finetuned-ner

This model is a fine-tuned version of prajjwal1/bert-tiny on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1689
  • Precision: 0.8083
  • Recall: 0.8274
  • F1: 0.8177
  • Accuracy: 0.9598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0355 1.0 878 0.1692 0.8072 0.8248 0.8159 0.9594
0.0411 2.0 1756 0.1678 0.8101 0.8277 0.8188 0.9600
0.0386 3.0 2634 0.1697 0.8103 0.8269 0.8186 0.9599
0.0373 4.0 3512 0.1694 0.8106 0.8263 0.8183 0.9600
0.0383 5.0 4390 0.1689 0.8083 0.8274 0.8177 0.9598

Framework versions

  • Transformers 4.10.0
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.0
  • Tokenizers 0.10.3
Downloads last month
88
Hosted inference API
Token Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train gagan3012/bert-tiny-finetuned-ner

Evaluation results