Edit model card

vit-base-mnist

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0236
  • Accuracy: 0.9949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3717 1.0 6375 0.0522 0.9893
0.3453 2.0 12750 0.0370 0.9906
0.3736 3.0 19125 0.0308 0.9916
0.3224 4.0 25500 0.0269 0.9939
0.2846 5.0 31875 0.0236 0.9949

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6,923

Dataset used to train farleyknight-org-username/vit-base-mnist

Space using farleyknight-org-username/vit-base-mnist 1

Evaluation results