See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: heegyu/WizardVicuna2-13b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8305847293aeda02_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8305847293aeda02_train_data.json
type:
field_input: snippet
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/6f59b245-53d3-422a-aa41-735a79b202e6
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 1
mlflow_experiment_name: /tmp/8305847293aeda02_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 256
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: a0bacad8-877d-4163-a1be-3647f8672526
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a0bacad8-877d-4163-a1be-3647f8672526
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
6f59b245-53d3-422a-aa41-735a79b202e6
This model is a fine-tuned version of heegyu/WizardVicuna2-13b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4990
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0326 | 0.0043 | 1 | 0.7933 |
0.5124 | 0.1083 | 25 | 0.6148 |
0.6121 | 0.2167 | 50 | 0.5365 |
0.4912 | 0.3250 | 75 | 0.5059 |
0.7466 | 0.4334 | 100 | 0.4990 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for error577/6f59b245-53d3-422a-aa41-735a79b202e6
Base model
heegyu/WizardVicuna2-13b-hf