See axolotl config
axolotl version: 0.4.0
# Llama-2-7b
# base_model: daryl149/llama-2-7b-chat-hf
# model_type: LlamaForCausalLM
# tokenizer_type: LlamaTokenizer
# is_llama_derived_model: true
#Mistral-7b
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
# git clone https://github.com/OpenAccess-AI-Collective/axolotl
# cd axolotl
# pip3 install packaging
# pip3 install -e '.[flash-attn,deepspeed]'
# accelerate launch -m axolotl.cli.train ./llama_7b_config.yaml
# accelerate launch -m axolotl.cli.inference ./llama_7b_config.yaml \
# --lora_model_dir="dohonba/mistral_7b_fingpt"
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: dohonba/combi
type: context_qa.load_v2
# - path: dohonba/tfns
# type: context_qa.load_v2
# - path: dohonba/auditor_sentiment
# type: context_qa.load_v2
# - path: dohonba/tfns
# type: context_qa.load_v2
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 14
# max_steps: 1000
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 50
evals_per_epoch: 0
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
lora-out
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0917
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.08 | 1.02 | 566 | 0.0986 |
0.0919 | 1.98 | 1110 | 0.0917 |
Framework versions
- PEFT 0.7.1
- Transformers 4.37.0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 6
Model tree for dohonba/mistral_7b_fingpt
Base model
mistralai/Mistral-7B-v0.1