Diffusers documentation

Variance preserving stochastic differential equation (VP-SDE) scheduler

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.14.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Variance preserving stochastic differential equation (VP-SDE) scheduler

Overview

Original paper can be found here.

Score SDE-VP is under construction.

ScoreSdeVpScheduler

class diffusers.schedulers.ScoreSdeVpScheduler

< >

( num_train_timesteps = 2000 beta_min = 0.1 beta_max = 20 sampling_eps = 0.001 )

The variance preserving stochastic differential equation (SDE) scheduler.

~ConfigMixin takes care of storing all config attributes that are passed in the scheduler’s __init__ function, such as num_train_timesteps. They can be accessed via scheduler.config.num_train_timesteps. SchedulerMixin provides general loading and saving functionality via the SchedulerMixin.save_pretrained() and from_pretrained() functions.

For more information, see the original paper: https://arxiv.org/abs/2011.13456

UNDER CONSTRUCTION