Diffusers documentation
CosmosTransformer3DModel
CosmosTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in Cosmos World Foundation Model Platform for Physical AI by NVIDIA.
The model can be loaded with the following code snippet.
from diffusers import CosmosTransformer3DModel
transformer = CosmosTransformer3DModel.from_pretrained("nvidia/Cosmos-1.0-Diffusion-7B-Text2World", subfolder="transformer", torch_dtype=torch.bfloat16)
CosmosTransformer3DModel
class diffusers.CosmosTransformer3DModel
< source >( in_channels: int = 16 out_channels: int = 16 num_attention_heads: int = 32 attention_head_dim: int = 128 num_layers: int = 28 mlp_ratio: float = 4.0 text_embed_dim: int = 1024 adaln_lora_dim: int = 256 max_size: typing.Tuple[int, int, int] = (128, 240, 240) patch_size: typing.Tuple[int, int, int] = (1, 2, 2) rope_scale: typing.Tuple[float, float, float] = (2.0, 1.0, 1.0) concat_padding_mask: bool = True extra_pos_embed_type: typing.Optional[str] = 'learnable' )
Parameters
- in_channels (
int
, defaults to16
) — The number of channels in the input. - out_channels (
int
, defaults to16
) — The number of channels in the output. - num_attention_heads (
int
, defaults to32
) — The number of heads to use for multi-head attention. - attention_head_dim (
int
, defaults to128
) — The number of channels in each attention head. - num_layers (
int
, defaults to28
) — The number of layers of transformer blocks to use. - mlp_ratio (
float
, defaults to4.0
) — The ratio of the hidden layer size to the input size in the feedforward network. - text_embed_dim (
int
, defaults to4096
) — Input dimension of text embeddings from the text encoder. - adaln_lora_dim (
int
, defaults to256
) — The hidden dimension of the Adaptive LayerNorm LoRA layer. - max_size (
Tuple[int, int, int]
, defaults to(128, 240, 240)
) — The maximum size of the input latent tensors in the temporal, height, and width dimensions. - patch_size (
Tuple[int, int, int]
, defaults to(1, 2, 2)
) — The patch size to use for patchifying the input latent tensors in the temporal, height, and width dimensions. - rope_scale (
Tuple[float, float, float]
, defaults to(2.0, 1.0, 1.0)
) — The scaling factor to use for RoPE in the temporal, height, and width dimensions. - concat_padding_mask (
bool
, defaults toTrue
) — Whether to concatenate the padding mask to the input latent tensors. - extra_pos_embed_type (
str
, optional, defaults tolearnable
) — The type of extra positional embeddings to use. Can be one ofNone
orlearnable
.
A Transformer model for video-like data used in Cosmos.
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< source >( sample: torch.Tensor )
Parameters
- sample (
torch.Tensor
of shape(batch_size, num_channels, height, width)
or(batch size, num_vector_embeds - 1, num_latent_pixels)
if Transformer2DModel is discrete) — The hidden states output conditioned on theencoder_hidden_states
input. If discrete, returns probability distributions for the unnoised latent pixels.
The output of Transformer2DModel.